
Waveform Analysis Using The Fourier Transform
DATAQ Instruments

Any signal that varies with respect to time can be reduced mathematically to a series of sinusoidal 
terms. This idea underlies a powerful analytical tool.

To calculate a transform, just listen. The human ear automatically and involuntarily performs a 
calculation that takes the intellect years of mathematical education to accomplish. The ear 
formulates a transform by converting sound — the waves of pressure traveling over time and 
through the atmosphere — into a spectrum, a description of the sound as a series of volumes at 
distinct pitches. The brain then turns this information into perceived sound.

A similar conversion can be done using mathematical methods on the same sound waves or 
virtually any other fluctuating signal that varies with respect to time. The Fourier transform is the 
mathematical tool used to make this conversion. Simply stated, the Fourier transform converts 
waveform data in the time domain into the frequency domain. The Fourier transform 
accomplishes this by breaking down the original time-based waveform into a series of sinusoidal 
terms, each with a unique magnitude, frequency, and phase. This process, in effect, converts a 
waveform in the time domain that is difficult to describe mathematically into a more manageable 
series of sinusoidal functions that when added together, exactly reproduce the original waveform. 
Plotting the amplitude of each sinusoidal term versus its frequency creates a power spectrum, 
which is the response of the original waveform in the frequency domain. Figure 1 illustrates this 
time to frequency domain conversion concept.

The Fourier transform has become a powerful analytical tool in diverse fields of science. In some 
cases, the Fourier transform can provide a means of solving unwieldy equations that describe 
dynamic responses to electricity, heat or light. In other cases, it can identify the regular 
contributions to a fluctuating signal, thereby helping to make sense of observations in astronomy, 
medicine and chemistry. Perhaps because of its usefulness, the Fourier transform has been 
adapted for use on the personal computer. Algorithms have been developed to link the personal 
computer and its ability to evaluate large quantities of numbers with the Fourier transform to 
provide a personal computer-based solution to the representation of waveform data in the 
frequency domain. But what should you look for in Fourier analysis software? What makes one 
software package better than another in terms of features, flexibility, and accuracy? This 
application note will present and explain some of the elements of such software packages in an 
attempt to remove the mystery surrounding this powerful analytical tool.
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Waveform Analysis Using The Fourier Transform
Figure 1 — The Fourier transform illustrated.

DATAQ Instruments' WinDaq Waveform Browser (WWB) playback software contains a Fourier 
transform algorithm that was the model for this application note and includes all elements of 
Fourier transformation discussed herein. All graphics and concepts presented in this note are also 
derived from the WWB Fourier transform utility.

A Trio of Transforms
Before computers, numerical calculation of a Fourier transform was a tremendously labor 
intensive task because such a large amount of arithmetic had to be performed with paper and 
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Waveform Analysis Using The Fourier Transform
pencil. These calculations became more practical as computers and programs were developed to 
implement new methods of Fourier analysis. One such method was developed in 1965 by James 
W. Cooley and John W. Tukey1 Their work led to the development of a program known as the fast 
Fourier transform. The fast Fourier transform (FFT) is a computationally efficient method of 
generating a Fourier transform. The main advantage of an FFT is speed, which it gets by 
decreasing the number of calculations needed to analyze a waveform. A disadvantage associated 
with the FFT is the restricted range of waveform data that can be transformed and the need to 
apply a window weighting function (to be defined) to the waveform to compensate for spectral 
leakage (also to be defined).

An alternative to the FFT is the discrete Fourier transform (DFT). The DFT allows you to 
precisely define the range over which the transform will be calculated, which eliminates the need 
to window. On the negative side, the DFT is computationally slower than the FFT.

The transformation from the time domain to the frequency domain is reversible. Once the power 
spectrum is displayed by one of the two previously mentioned transforms, the original signal can 
be reconstructed as a function of time by computing the inverse Fourier transform (IFT). Each of 
these transforms will be discussed individually in the following paragraphs to fill in missing 
background and to provide a yardstick for comparison among the various Fourier analysis 
software packages on the market.

Power Spectrum Generation Using the FFT
The FFT is just a faster implementation of the DFT. The FFT algorithm reduces an n-point 
Fourier transform to about

(n/2) log2 (n)

complex multiplications. For example, calculated directly, a DFT on 1,024 (i.e., 210) data points 
would require

n2 = 1,024 x 1,024 = 220 = 1,048,576

multiplications. The FFT algorithm reduces this to about

(n/2) log2 (n) = 512 x 10 = 5,120

multiplications, for a factor-of-200 improvement.

But the increase in speed comes at the cost of versatility. The FFT function automatically places 
some restrictions on the time series to be evaluated in order to generate a meaningful, accurate 
frequency response. Because the FFT function uses a base 2 logarithm by definition, it requires 
that the range or length of the time series to be evaluated contains a total number of data points 
precisely equal to a 2-to-the-nth-power number (e.g., 512, 1024, 2048, etc.). Therefore, with an 
FFT you can only evaluate a fixed length waveform containing 512 points, or 1024 points, or 
2048 points, etc. For example, if your time series contains 1096 data points, you would only be 
able to evaluate 1024 of them at a time using an FFT since 1024 is the highest 2-to-the-nth-power 
that is less than 1096.

Because of this 2-to-the-nth-power limitation, an additional problem materializes. When a 
waveform is evaluated by an FFT, a section of the waveform becomes bounded to enclose 512 
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Waveform Analysis Using The Fourier Transform
points, or 1024 points, etc. One of these boundaries also establishes a starting or reference point 
on the waveform that repeats after a definite interval, thus defining one complete cycle or period 
of the waveform. Any number of waveform periods and more importantly, partial waveform 
periods can exist between these boundaries. This is where the problem develops. The FFT 
function also requires that the time series to be evaluated is a commensurate periodic function, or 
in other words, the time series must contain a whole number of periods as shown in Figure 2a to 
generate an accurate frequency response. Obviously, the chances of a waveform containing a 
number of points equal to a 2-to-the-nth-power number and ending on a whole number of periods 
are slim at best, so something must be done to ensure an accurate representation in the frequency 
domain. Before we examine a way to ensure accuracy in the frequency domain, lets look closer at 
the whole/partial number of periods dilemma.

What would happen if an FFT was performed on a waveform that did not contain a whole number 
of periods as shown in Figure 2b?
4 Product Links:  Data Acquisition | Data Logger | Chart Recorder | Thermocouple | Oscilloscope

http://www.dataq.com/index.html
http://www.dataq.com/data-logger/data-logger.html
http://www.dataq.com/c_cr/index.htm
http://www.dataq.com/products/hardware/di1000tc.htm
http://www.dataq.com/products/hardware/oscilloscope.htm


Waveform Analysis Using The Fourier Transform
Figure 2 — An example of waveform continuity versus discontinuity that avoids complicated mathematical 
explanation. (a) shows a best case, one-in-a-million waveform where the range of the FFT exactly contains a whole 
number of periods, starting with the waveforms mean value. This waveform possesses end-point continuity as shown 
in ( c), which means the resulting power spectrum will be accurate and no window need be applied. A more typical 
encounter is shown in (b), where the range of the FFT does not contain a whole number of periods. The discontinuity 
in the end-points of this waveform (d) means the resulting power spectrum will contain high frequency components 
not present in the input, requiring the application of a window to attenuate the discontinuity and improve accuracy.

Think of the length of waveform to be evaluated as a ring that has been uncoiled. If the ends of the 
uncoiled ring were joined back together to again form a ring, a waveform consisting of a whole 
number of periods would join together perfectly as shown in Figure 2c. However, a waveform 
consisting of a fractional number of periods would not join together perfectly without a gap 
between or an overlapping of the ends as shown in Figure 2d. Thus, the FFT would evaluate this 
waveform with the end-point error and generate a power spectrum containing false frequency 
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Waveform Analysis Using The Fourier Transform
components representative of the end-point mismatch. Consider the spectra shown in Figure 3. 
This figure shows the power spectrum of two sine waves of equal amplitude and frequency. 
However, the peak of the right power spectrum appears somewhat "spread out". This inaccuracy 
is the result of an FFT performed on a waveform that does not contain a whole number of periods. 
The spreading out or "leakage" effect of the right power spectrum is due to energy being 
artificially generated by the discontinuity at the end points of the waveform.

Fortunately, a solution exists to minimize this leakage effect error and ensure accuracy in the 
frequency domain. Aside from the DFT (to be defined), the only solution is to multiply the time 
series by a window weighting function before the FFT is performed. Most window weighting 
functions (often referred to as just "windows") attenuate the discontinuity by tapering the signal to 
zero at both ends of the window, as shown in Figure 5d. However, if your waveform has important 
information appearing at the ends of the window, it will be destroyed by the tapering. In this case, 
a solution other than a window must be sought. With the window approach, the periodically 
incorrect signal as processed by the FFT will have a smooth transition at the end points which 
results in a more accurate power spectrum representation. A number of windows exist. Each has 
different characteristics that make one window better than the others at separating spectral 
components near each other in frequency, or at isolating one spectral component that is much 
smaller than another, or whatever the task. Some popular windows (named after their inventors) 
are Hamming, Bartlett, Hanning, and Blackman. The Hamming window offers the familiar bell-
shaped weighting function but does not bring the signal to zero at the edges of the window. The 
Hamming window produces a very good spectral peak, but features only fair spectral leakage 
reduction. The Bartlett window offers a triangular shaped weighting function that brings the 
signal to zero at the edges of the window. This window produces a good, sharp spectral peak and 
is good at reducing spectral leakage as well. The Hanning window offers a similar bell-shaped 
window (a good approximation to the shape of the Hanning window can be seen in Figure 5d) that 
also brings the signal to zero at the edges of the window. The Hanning window produces good 
spectral peak sharpness (as good as the Bartlett window), but the Hanning offers very good 
spectral leakage reduction (better than the Bartlett). The Blackman window offers a weighting 
function similar to the Hanning but narrower in shape. Because of the narrow shape, the 
Blackman window is the best at reducing spectral leakage, but the tradeoff is only fair spectral 
peak sharpness. As Figure 4 illustrates, the choice of window function is an art. It depends upon 
your skill at manipulating the tradeoffs between the various window constraints and also on what 
you want to get out of the power spectrum or its inverse. Obviously, a Fourier analysis software 
package that offers a choice of several windows is desirable to eliminate spectral leakage 
distortion inherent with the FFT.

In short, the FFT is a computationally fast way to generate a power spectrum based on a 2-to-the-
nth-power data point section of waveform. This means that the number of points plotted in the 
power spectrum is not necessarily as many as was originally intended. The FFT also uses a 
window to minimize power spectrum distortion due to end-point discontinuity. However, this 
window may attenuate important information appearing on the edges of the time series to be 
evaluated and distort the results of an IFT operation (to be defined) as can be seen in Figure 5d. 
With these limitations inherent to the FFT, does the Fourier analysis software package you are 
considering offer a solution other than the FFT?
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Waveform Analysis Using The Fourier Transform
Another solution abandons windowing in favor of allowing the user to precisely define the range 
over which the Fourier transform will be calculated. This approach nullifies the 2-to-the-nth-
power limitation and is called a DFT.

Power Spectrum Generation Using The DFT
If it is necessary to transform a portion of the waveform with more precision than the FFT will 
allow, or when a non-windowed transform is desired, DFT generation is the answer. For example, 
if you are processing transient signals, the edges contain important information that will be 
unacceptably distorted by applying the window solution. In this case, you would have no choice 
but to use the DFT. As stated previously, the DFT allows you to adjust the end-points that define 
the range of the waveform to be transformed, thus eliminating the need for windowing. This 
approach allows a waveform containing any number of points to be evaluated, which provides 
more flexibility than the fixed-length, 2-to-the-nth-power FFT. However, to prevent the same 
leakage effect experienced with a non-windowed FFT, the DFT must be generated over a whole 
number of periods starting at the waveforms mean level crossing. In other words, the end-points 
that define the range of the waveform over which the DFT will be calculated must be adjusted to 
enclose or define a whole number of periods, preferably starting at or around the point where the 
waveform crosses its mean.

The DFT allows more versatility and precision than the FFT. However, versatility and precision 
come at the expense of added computation time by the algorithm and added time spent by you on 
end-point positioning. For example, Table 1 compares the difference in computation time required 
to generate an FFT and a DFT on an identical waveform using DATAQ Instruments' WWB 
Fourier transform utility. The times shown are in seconds and were obtained from a 386-based, 25 
megahertz PC without a math coprocessor. Since the WWB Fourier transform algorithm uses 
integer arithmetic, a math co-processor does little to increase performance and is therefore not 
needed for this package. Some software packages either require a math co-processor for operation 
or strongly recommend one for optimal performance. Note the DFT computation times are only 
approximately four times slower than those of the FFT. This is because the WWB utility uses a 
computational technique very similar to the FFT in order to compute the DFT. The result is a 
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Waveform Analysis Using The Fourier Transform
much faster calculation than the standard n2 number of multiplications normally required by a 
DFT.

Figure 3 — The spectrum of a sine wave peaks at a single frequency as shown on top in the illustration above when 
an FFT is performed on a section of waveform that contains a whole number of periods. If the FFT is performed on a 
fractional number of periods, the spectrum gives a very different picture as shown on the bottom in the illustration 
above — a broad peak resulting in poorly determined frequency and inaccurate amplitude. These waveforms were 
generated by an inexpensive function generator, which accounts for the noise present in the spectrum.
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Waveform Analysis Using The Fourier Transform
Figure 4 — The significance of window selection is well illustrated by the Fourier transformation of two sine waves 
close to each other in frequency, but widely differing in amplitude. (a) shows the best case, matched end-point 
transform where the two signal frequencies that makeup the original waveform are clearly defined, one 2.2 Hz at 90 
dB and the other 10.9 Hz at 46 dB. More typically, (b) shows the transform of the same waveform only with 
mismatched end-points. Note that the second peak is not even visible in this spectrum. The need for a window clearly 
exists. The remaining transforms illustrate the degree of success attained with various windows in suppressing 
spectral leakage and recovering the lost frequency component. Each window was applied to the original waveform, 
with the result illustrating the tradeoff between sharpness of peaks and decay of sidelobes. (c) shows a Hamming 
window. Note that this window never brings the signal to zero. (d) shows the Bartlett window, (e) shows the Hanning 
window, and (f) shows the Blackman window. For this spectral-separation example, the Blackman window is the best 
at bringing out the weaker term as a well defined peak.

Table 1 — Elapsed computation time in seconds for various-point transforms. It should be 
mentioned that the DFT was calculated over a range of data points equal to one less than the 
number shown. This was done to ensure that the software would generate a DFT. If it is operating 
on a 2-to-the-nth-power number of data points (e.g., 1024), the software is "smart" enough to 
recognize that either an FFT or a D FT can be generated from this number of data points. Since a 

Transform 
Type

Number of Points

512 1024 2048 4096 8192 16384

FFT 0.3 0.6 0.9 1.4 2.6 7.3

DFT 1.3 2.0 3.3 5.6 12.6 --
Product Links:  Data Acquisition | Data Logger | Chart Recorder | Thermocouple | Oscilloscope 9

http://www.dataq.com/index.html
http://www.dataq.com/data-logger/data-logger.html
http://www.dataq.com/c_cr/index.htm
http://www.dataq.com/products/hardware/di1000tc.htm
http://www.dataq.com/products/hardware/oscilloscope.htm
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DFT means many more unnecessary calculations, the software will take the path of least 
calculations, resulting in an FFT. WinDaq is capable of transforming a maximum of 16,384 data 
points using an FFT, and 8,191 points using a DFT.

Time Series Generation Using The IFT
As with other bilateral transformations, such as rectangular to polar coordinates, the Fourier 
transformation works in both directions. If the power spectrum (as a function of frequency) were 
to be "run backward", the original signal would be, in principle, reconstructed as a function of 
time. This is known as the inverse Fourier transform (IFT). You might be questioning the purpose 
of an IFT if all it does is get you back to where you started. The beauty of the IFT lies in its ability 
to get you back to the time domain after the power spectrum has been edited in the frequency 
domain. This capability is very useful in power spectrum filtering applications. For example, in 
many cases it is desirable to examine a waveform without any "noise" present to distort the true 
nature of the signal. This can be done by applying high-pass, low-pass, band-pass, and notch filter 
functions to the power spectrum before performing the IFT. A high-pass filter will remove all 
unwanted frequency components less than a designated point on the power spectrum and a low-
pass filter removes all unwanted frequency components greater than the designated point. A band-
pass filter is a combination of high-pass and low-pass filters applied to isolate a narrow band of 
interest on the power spectrum. A notch filter removes the unwanted frequency component at the 
designated point. Figure 5 illustrates the kind of power spectrum editing possible in the frequency 
domain. Filtering operations can be a powerful feature in a Fourier analysis software package.

Other Fourier Analysis Software Issues
The needs of any Fourier analysis application are best served by a graphics based software 
package that allows fast power spectrum editing. In addition to the basic FFT, DFT, and IFT 
operations, the value of a Fourier analysis software package can be further enhanced by the extra 
"bells and whistles" that accompany it.

Software packages supporting waveform Fourier analysis should be capable of displaying the 
strength of a frequency component in either engineering units or relative magnitude (decibels) 
since converting power spectrum amplitude units can be a time consuming task.

Another issue is power spectrum resolution. Other than speed, resolution is the only other 
difference between a 512-point transform and a 16,384-point transform. A power spectrum 
always ranges from the dc level (0 Hz) to one-half the sample rate of the waveform being 
transformed, so the number of points in the transform defines the power spectrum resolution (a 
512-point Fourier transform would have 256 points in its power spectrum, a 1024-point Fourier 
transform would have 512 points in its power spectrum, and so on). For example, if you wanted to 
see separate 20 and 21 Hz frequency components in the power spectrum of a complex waveform, 
a 512-point Fourier transform might not show these individual components clearly since its entire 
power spectrum is only divided into 256 equally spaced points and the desired frequencies are so 
close together. However, if the transform contained more points, it would be able to devote more 
points to the definition of closely spaced frequency components. The more the number of points 
in the transform, the better the frequency resolution.
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Waveform Analysis Using The Fourier Transform
(a) Original Waveform

(b) Power Spectrum of (a)

(c) Filtered Power Spectrum

(d) IFT Result
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Figure 5 — Editing takes place in the frequency domain. The waveform shown by (a) is a 20 Hz signal containing 
undesirable 60 Hz noise. A 512-point FFT was used to generate its power spectrum shown by (b). While in the 
frequency domain, all undesirable frequency components greater than the 40 Hz corner frequency (including the 60 
Hz noise) were edited out, or reduced to zero by applying a low pass filter as shown by (c). An IFT was then 
generated from this filtered power spectrum resulting in the pure 20 Hz waveform shown by (d). Note the bell-shaped 
appearance of the waveform. This is due to the application of a Hanning window, a solution to the spectral leakage 
dilemma inherent with the FFT. Note also how the Hanning window attenuates the signal to zero at the edges of the 
window. Had a DFT been applied, this attenuation would be eliminated and the 20 Hz signal would be displayed at its 
full amplitude from end to end.

A related issue is power spectrum magnification. The software under consideration should be able 
to display the entire power spectrum on one screen width regardless of the number of points in the 
transform. This is useful for spotting the overall trend of a spectrum. With magnification, the 
software should also allow you to select a portion of the power spectrum plot and examine it more 
closely with several magnification factors. A video standard of 1024 x 768 provides 1024 picture 
elements (pixels) of horizontal resolution. If a 512-point Fourier transform is performed, the 256 
points generated by the transform fit nicely on a screen 1024 pixels wide. The same is true of a 
1024-point transform, where a 1024 pixel wide screen is more than adequate to contain the 512 
points generated by the transform. The problem arises when a transform larger than 2048 points is 
performed. Say an 8192-point Fourier transform is performed. The 4096 points generated by the 
transform is much wider than the 1024 pixel width of the screen. In order to get the entire power 
spectrum on one screen width, a compression factor (in this case, a factor of 4) must be applied. 
Magnification must then be applied to examine the spectrum at the full resolution of the 8192-
point transform. Additionally, when a magnification factor is applied that prohibits the display of 
the entire power spectrum on a single screen width, the software should allow you to pan the 
entire plot one screen width at a time.

Yet another feature to consider is an export facility. Is it possible to export the coordinates 
defining an FFT plot to an ASCII file with the software you are considering? This feature allows 
you to reproduce the spectrum for use in other programs.

Does the software you are considering allow you to quickly see the results of each window on the 
same waveform? This can be a handy and time saving feature when experimenting with the 
different types of windows and the results each one delivers.

Finally, the software package should be capable of power spectrum smoothing. This is best 
implemented by a moving average utility. A moving average is accomplished by taking two or 
more data points from the spectrum, adding them together, dividing their sum by the total number 
of data points added, replacing the first data point with the average just computed, and repeating 
the steps with the second, third, and so on data points until the end of the data is reached. This 
simple averaging technique is used to attenuate random, small amplitude frequency spikes often 
encountered in a power spectrum plot.
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