

DI-245 Communication Protocol

Page 1 of 12

DI-245 Communication Protocol

Although DATAQ Instruments provides ready-to-run WinDaq software with its DI-245 Data Acquisition

Starter Kits, programmers will want the flexibility to integrate the DI-245 in the context of their own

application. To do so they want complete control over DI-245 hardware, which can be accomplished by

using the device at the protocol level. This white paper describes how protocol-level programming of

the DI-245 is implemented across the Windows and Linux operating systems. First, we'll describe the

virtual COM operation of the DI-245's interface and how communicating with the DI-245 is

accomplished via a COM port hooked by the operating system. Then we'll define the DI-245's command

set and scan list architecture and finish with a description of the DI-245's binary and ASCII response

formats. Note that all of the commands and their arguments described in this protocol are lower case

unless otherwise stated.

Virtual COM Port Operation

Installing the DI-245 driver package and connecting DI-245 hardware to the host computer’s USB port

results in a COM port being hooked by the operating system and assigned to the DI-245 device. COM

port configured should be:

COM Port Communication Settings

Parameter Value

Baud rate 115200

Data bits 8

Stop bits 1

Parity none

Multiple DI-245 devices may be connected to the same PC without additional driver installations, which

results in a unique COM port number assignment to each by the operating system. Hooking a COM port

in this manner facilitates ease of programming from any operating system and programming language

by simply writing commands to and reading responses from the port, but before any meaningful

communication with a connected DI-245 can begin the controlling program must determine the COM

port number assigned to the device. The method used for this varies as a function of the host operating

system.

Virtual COM Driver (Windows)

DATAQ Instruments provides a minimum installation for Windows that you can download and use at no

charge, even for OEM applications. This is a scaled-down version of the standard installation that omits

WinDaq software and other utilities that are extraneous in a pure programming environment. The

download provides a Microsoft-signed INF file that ensures trouble-free operation with both 32- and 64-

DI-245 Communication Protocol

Page 2 of 12

bit Windows 7, Windows 8, and Windows 8.1. The installation depends upon drivers ftdibus.sys and

ftser2k.sys usbser.sys, located in path %SystemDrive%\Windows\System32\Drivers.

COM Port Number Discovery (Windows)

Using the DI-245’s vendor and product IDs, Windows’ registry can be accessed programmatically to

determine the COM port number that the operating system assigned to one or more connected DI-245s.

The Vendor and Product ID combination for the DI-245 is: VID_0683 and PID_2450 respectively. With

this information and at least one connected DI-245, determining assigned COM port numbers is a two-

step process:

1.The registry tree HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\ftser2k\Enum\ will

contain one Device Instance ID for each DI-245 connected to the PC. The Device Instance ID assumes

the following typical data for string name 0:

FTDIBUS\VID_0683+PID_2450+5&18B6E64F&0&8\0000.

The first two sections of this string (FTDIBUS\VID_0683+PID_2450+) are constant for all DI-245s. The

second section (5&18B6E64F&0&8) will vary depending upon where in the USB port hierarchy the

DI-245 is physically connected. Since more than one DI-245 cannot be connected to the same USB

port this value will be unique for each concurrently connected DI-245. The entire string value is

required for the second step.

2.Registry tree HKEY_LOCAL_MACHINE

\System\CurrentControlSet\Enum\FTDIBUS\VID_0683+PID_2450+5&18B6E64F&0&8\0000

(continuing with the above example) shows a variable called FriendlyName set to string value

DATAQ DI-245 (COMXX), where XX is the COM port number assigned to the specified DI-245. This

string may be parsed to extract the port number assigned to the DI-245. The process may be

repeated using other Device Instance IDs determined from step (1) for other connected DI-245

instruments.

COM port number assignments may also be determined manually from Windows’ Device Manager in its

Ports (COM & LPT) section. However, the assigned value will change depending upon the physical USB

port connected to the DI-245, any other devices that may hook COM ports, and the apparently arbitrary

whims of the Windows operating system

Virtual COM Driver (Linux)

To use FTDI-based DI-245 using a virtual COM port interface on Linux, the following commands must be

issued on each reboot or unloading of the drivers (ftdi_sio & usbserial):

DI-245 Communication Protocol

Page 3 of 12

sudo modprobe usbserial vendor=0x0683 product=0x2450

echo "0683 2450" | sudo tee -a /sys/bus/usb-serial/drivers/ftdi_sio/new_id

If the DI-245 wasn't plugged in, plug it in, otherwise, unplug and re-plug for the changes to take effect. A

new device file (treated as the COM port to talk to the DI-245) will show up in the "/dev/" directory

using the next available increment for "ttyUSB0". For example, if no other "ttyUSB" files are present

under "/dev/", plugging in the DI-245 after issuing the previous commands will result in the following file

(COM port) being created: /dev/ttyUSB0

DI-245 Command Set Overview

The DI-245 employs a simple ASCII character command set that allows complete control of the

instrument.

Long commands and arguments (longer than two characters) are separated by a space character (0x20),

and each long command string must be terminated with a carriage return character (x0D). Long

commands do not echo until the 0x0D character is received.

Short commands (2 characters or less) are preceded with a null character (0x00), which is not echoed,

but each command character is echoed as it is sent.

Basic command structure is as follows:

<0x00>command<(0x20)<argument1>(0x20)<agrument2>(0x0D)>

DI-245 Command Set

ASCII command Action

Basic Information Commands

Various 2-character commands Returns ASCII information related to the hardware as a function of the argument value.

Scanning Commands
chn arg0 arg1 Populates the DI-245 scan list
S1 Start scanning
S0 Stop scanning

CJC Commands
cjcdelta arg0 <arg1> Adjusts CJC sensor offsets

Digital Input Commands
dchn arg0 Enable or disable the digital channel

DI-245 Communication Protocol

Page 4 of 12

Basic Information Commands

The DI-245 command set supports a number of basic command/response items that provide a simple

means to ensure the integrity of the communication link of the program to the device. These commands

produce simple, yet useful responses from the instrument and should be employed as the programmer's

first DI-245 communication attempt. If these commands don't work with a functioning DI-245 then a

problem exists in the communication chain and further programming efforts will be futile until resolved.

Basic information commands are preceded with a Null character that is not echoed, but each command

character is echoed by the DI-245 as it is sent. Responses to this set of commands include echoing each

command character as it is received, followed by the response. For example, the command

"(0x00)A1" generates the following response: A12450

DI-245 Command Set

ASCII command Action
A1 Returns device name: "2450"
A2 Returns firmware version as two hex bytes (e.g. 0x65 = 10110 for firmware revision 1.01)
NZ Returns the DI-245's serial number (of the ten digits returned, the left-most eight are the device's s/n)
A7 Returns last calibration date as the number of elapsed seconds since Jan. 1, 1970 in hex

chn Command

The DI-245 employs a scan list approach to data acquisition. A scan list is an internal schedule (or list) of

channels to be sampled in a defined order. It is important to note that a scan list defines only the type

and order in which data is to be sampled, not the sampled data itself. The DI-245's scan list supports

only analog inputs. Analog input channels may be further defined in the scan list for input type or range.

Scan list members are populated using the following general syntax (arguments are in ASCII and

separated with a space):

chn(0x20)member(0x20)value(0x0D)

where:

0 ≤ member ≤ 3 and indicates the position in the scan list.

0 ≤ value ≤ 65535 and indicates the value assigned to the defined scan list member to define channel

number and measurement function. Refer to the following Scan List Configuration and Measurement

Tables.

DI-245 Communication Protocol

Page 5 of 12

Scan List Configuration Table

Function
Scan List Bit Position

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Analog in,
Channel 0

All unused bits = 0

M
o

d
e

(see M
easu

rem
en

t

tab
le)

R
an

ge

(see M
easu

rem
en

t

tab
le)

Full Scale
Range
(see

Measurement
table)

All unused bits = 0

0 0 0 0

Analog in,
Channel 1

0 0 0 1

Analog in,
Channel 2

0 0 1 0

Analog in,
Channel 3

0 0 1 1

Measurement Table

Full Scale Range Measurement

Scan List Bit Position Range = 0 Range =1 Range = Don't care

10 9 8 Mode = 0 Mode = 0 Mode = 1

0 0 0 ±500 mV ±50 V B thermocouple

0 0 1 ±250 mV ±25 V E thermocouple

0 1 0 ±100 mV ±10 V J thermocouple

0 1 1 ±50 mV ±5 V K thermocouple

1 0 0 ±25 mV ±2.5 V N thermocouple

1 0 1 ±10 mV ±1 V R thermocouple

1 1 0 n/a n/a S thermocouple

1 1 1 n/a n/a T thermocouple

Example chn Commands*

Command(s) Action
"chn 0 0(0x0D)" Enable analog channel 0 for a ±50 V range as the first scan list member
"chn 0 2(0x0D)" Enable analog channel 2 for a ±50 V range as the first scan list member
"chn 0 5120(0x0D)"

"chn 1 514(0x0D)"

"chn 2 3331(0x0D)"

Enable analog channel 0 to measure an N type TC as the first scan list member
Enable analog channel 2 to measure ±100 mV as the second scan list member
Enable analog channel 3 to measure ±1 V as the third scan list member

* Scan list parameters are in decimal.

Observe the following when populating the DI-245 scan list:

1. Insert analog channels in the scan list in order of lowest to highest channel number.

2. Do not duplicate channel numbers in the scan list.

3. The scan list is not terminated.

xrate Command

Use the xrate command to define the burst sample rate (Hz) of the DI-245. A single enabled channel is
sampled at the rate defined by xrate. If multiple channels are enabled, the sample rate per channel is
defined as the value defined by xrate, divided by ten and divided again by the number of enabled

DI-245 Communication Protocol

Page 6 of 12

channels. For example, if xrate = 2000 Hz and there are two channels enabled, the sample rate per
channel is 100 Hz.

xrate definition is a function of two arguments:

xrate arg0 arg1

where:

arg0 is a 16-bit unsigned integer (see arg0 Configuration)
arg1 is a 16-bit unsigned integer representing the integer result of the calculated burst rate

arg0 Configuration

Bit Position

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Sin
c4

AF value 0 SF value

Sample rates are constructed through use of integer values AF, SF, and bit Sinc4 where:

0 ≤ AF ≤ 15
0 ≤ SF ≤ 123

IF (burst rate in Hz) ≥ 500 then Sinc4 = 1 ELSE Sinc4 = 0

Any given burst sampling rate (B) is calculated using at least SF and possibly AF values and the following
two equations:

if AF = 0

 (1)

Solving for Burst rate

 (1a)

if AF > 0

 (2)

Solving for Burst rate

 (2a)

DI-245 Communication Protocol

Page 7 of 12

The choice of one equation over another is a matter of which arrives closest to a given desired burst
sampling rate in Hz. However, if the desired burst rate is less than or equal to 64 Hz, Equations (1) and
(1a) should be applied, since no AF values greater that zero contribute to a solution. For burst rates
greater than 64, the determination of SF and AF factors is an iterative process with as many as 1,845
factor value combinations to arrive at a burst rate that is nearest the desired value. In cases where two
or more combinations of AF and SF values arrive at the same burst rate, the combination with the
highest SF value should be chosen.

Example 1:
Our desired burst rate is 128 Hz. Using (1) we determine that an integer value of 61 or 62 arrives closest
to the ideal 128 Hz value. Substituting either into (2) yields values for AF that are outside its defined
range. Therefore, (1a) is used with the values 61 and 62 to determine which results in a value closest to
128 Hz. SF value 62 wins, with a sampling throughput rate of 126.9841 Hz. Set arg0 and arg1 as follows:

arg0 = 62

Bit Position

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0

arg1 = 127

Example 2:
Our desired burst rate is 10 Hz. Using (2a) values SF=79 and AF=7 produce a burst rate value precisely
equal to 10 Hz. Set arg0 and arg1 as follows:

arg0 = 1871

Bit Position

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1

arg1 = 10

Example 3:
Our desired burst rate is 750 Hz. Using (1) we determine that the ideal SF factor is 9.67, setting the
integer value to either 9 or 10. Either SF value renders values for AF that are out of range. Therefore, use
of equation (1a) shows that an SF value of 10 yielding an actual burst rate of 727.27 Hz falls closest to
the 750 Hz ideal. Set arg0 and arg1 as follows:

DI-245 Communication Protocol

Page 8 of 12

arg0 = 4106

Bit Position

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0

arg1 = 727

Table of typical burst rates versus AF and SF values:

Burst Rate
(Hz)

SF AF
Actual Burst

Rate (Hz)
Burst Rate

(Hz)
SF AF

Actual Burst
Rate (Hz)

1 123 15 3.58 70 113 0 70.175

2 123 15 3.58 80 99 0 80

3 123 15 3.58 90 88 0 89.89

4 110 15 4.004 100 79 0 100

5 99 13 5 200 39 0 200

6 110 9 6.006 300 26 0 296.3

7 103 8 6.99 400 19 0 400

8 99 7 8 500 15 0 500

9 110 5 9.009 600 12 0 615.38

10 99 5 10 700 10 0 727.27

20 99 1 20 800 9 0 800

30 37 4 30.08 900 8 0 888.89

40 49 1 40 1000 7 0 1000

50 39 1 50 1500 4 0 1600

60 18 4 60.15 2000 3 0 2000

cjcdelta Command

The cjcdelta command applies CJC (cold junction compensation) offsets per channel to ensure
measurement accuracy when using thermocouples. Since accurate thermocouple measurements
depend upon an equally accurate measurement of junction temperature (where the thermocouple
connects to the DI-245), the cjcdelta command exists to ensure accurate junction temperature readings.
Adjustments using cjcdelta should be applied only on a channel with a connected thermocouple whose
junction is held in an ice bath. This allows cjcdelta to adjust the measured temperature to 0°C, ±
0.0625°C.

The command syntax of cjcdelta consists of the command with at least one, but no more than two ASCII
integer arguments that are separated by a space character (0x20), and terminated with a carriage return
character (0x0D). General forms of the command follow:

DI-245 Communication Protocol

Page 9 of 12

cjcdelta(0x20)-1(0x0D)

Reads CJC offsets from all channels and returns four values separated by a space in the order of channel
0 to channel 3. Each value will fall in the range of -100 to +100. An offset may be calculated by
multiplying the value returned per channel by 0.0625°C.

cjcdelta(0x20)i(0x20)j(0x0D)

where:
0 ≤ i ≤ 3 and represents the channel number
-100 ≤ j ≤ 100 and represents the offset multiplier (j * 0.0625°C)

cjcdelta(0x20)-2(0x0D)

Writes CJC offsets to the DI-245's flash memory.

Note that CJC offsets are inversely proportional to temperature. Higher offset values decrease
temperature readings, and lower values increase temperature readings.

dchn Command

The dchn command is used to enable or disable the digital input channel, which conveys information
about the state of the DI-245's remote stop/start and event inputs. The command allows one argument
in the form of a single ASCII character, as follows:

dchn(0x20)i(0x0D)

where:
i = 1 enables the digital input channel
i = 0 disables the digital input channel

Scanning Commands

The DI-245 accepts two commands that control its scanning process, one to start and another to stop.
These two-character ASCII commands consist of an null character (0x00), followed by an upper-case S
character (0x53), followed by either an ASCII "0" or "1" (0x30 and 0x31 respectively). All but the null
character are echoed by the DI-245.

(0x00)Si

where:
i = 1 starts the scanning processes
i = 0 stops the scanning process

DI-245 Binary Output Format

DI-245 Communication Protocol

Page 10 of 12

Issuing the command to start scanning causes the DI-245 to respond with a continuous binary stream of
one 16-bit words per enabled measurement. The least significant bit of the first byte in this stream is
always cleared and set in all other response bytes to allow the host program to synchronize with the
data stream. The stream sequence repeats until data acquisition is halted by the stop command.
Assuming that all four analog channels and the digital channel are enabled in order, data stream
composition is as follows:

DI-245 Binary Data Stream Example
(all channels enabled in order)

Scan list
position

Word
Count

Byte
Count

B7 B6 B5 B4 B3 B2 B1
B0

(sync)

0
(Analog in 0)

1
1 A6 A5 A4 A3 A2 A1 A0 0

2 A13 A12 A11 A10 A9 A8 A7 1

1
(Analog in 0)

2
3 A6 A5 A4 A3 A2 A1 A0 1

4 A13 A12 A11 A10 A9 A8 A7 1

2
(Analog in 0)

3
5 A6 A5 A4 A3 A2 A1 A0 1

6 A13 A12 A11 A10 A9 A8 A7 1

3
(Analog in 0)

4
7 A6 A5 A4 A3 A2 A1 A0 1

8 A13 A12 A11 A10 A9 A8 A7 1

4
(Digital in)

5
9 D0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 D1 1

0
(Analog in 0)

6
11 A6 A5 A4 A3 A2 A1 A0 0

12 A13 A12 A11 A10 A9 A8 A7 1

••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •••

Binary Analog Channel Coding

The DI-245 transmits a 14-bit binary number for every analog channel conversion. Meaningful
information is extracted from these readings by inverting the most significant bit, and treating the result
as a two’s complement number:

AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
ADC

Counts

0 1 1 1 1 1 1 1 1 1 1 1 1 1 8191

0 1 1 1 1 1 1 1 1 1 1 1 1 0 8190
••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •••

0 0 0 0 0 0 0 0 0 0 0 0 1 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1

1 1 1 1 1 1 1 1 1 1 1 1 1 0 -2
••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •••

1 0 0 0 0 0 0 0 0 0 0 0 0 1 -8191

1 0 0 0 0 0 0 0 0 0 0 0 0 0 -8192

Channels configured as a voltage input use the following equation to derive volts as a function of FSR
(full scale range) and reported ADC counts:

DI-245 Communication Protocol

Page 11 of 12

If FSR = 25 mV and measured ADC counts = 2587:

If FSR = 2.5 V and measured ADC counts = -1279:

Channels configured as a thermocouple (TC) input borrow two ADC counts from the measurement
range to indicate error conditions.

ADC counts = +8191 indicates an unrecoverable CJC error. The DI-245's processor cannot communicate
with the CJC temperature sensor, or the reading is outside the CJC sensor's measurement range.

ADC counts = -8192 indicates a TC burnout condition.

An applied temperature is derived from ADC counts (A) according to the following equation, where m
and b are determined by TC type:

TC Type m b

J 0.08606 495

K 0.095947 586

T 0.036621 100

B 0.095825 1035

R/S 0.110962 859

E 0.073242 400

N 0.091553 550

DI-245 Communication Protocol

Page 12 of 12

Control

Revision Date Description
1.0 Apr 22, 2014 Original release level

1.01 Apr 29, 2014 Changed he CJCDELTA command to "-2" from "4" to write CJC offsets to the DI-245's flash memory.

1.02 May 15, 2014 Reduced burst rate equations; Added a comment regarding burst rates less than 64 Hz

1.03 May 16, 2014

Corrected a typo in the "Example chn Commands" table where an argument was in hex instead of decimal;
Corrected a typo in CJC scale factor to 0.0625 from 0.0624°C; Added a footnote to the "Example chn Command"
table stating that all parameters are in decimal; Corrected a calculation error in the Speced vs. Actual
temperature measurements table that used 8191 as full scale ADC counts vs the correct 8190.

1.04 May 16, 2014
Returned values from the CJCDELTA command range from ±100, not 0-99. Added note that CJC offsets are
inversely proportional to temperature readings.

1.05 May 19, 2014 Various corrections to "COM Port Number Discovery (Windows)"

1.06 May 20, 2014 Changed nomenclature of arg0 and arg1 for the xrate command to decimal from hex.

1.07 Jun 20, 2014 Removed the reference to specified vs. measured TC ranges as misleading and unnecessary.

1.08 Aug 18, 2015 Added COM port settings table and minor clean up.

1.09 Sep 30, 2015 Added details about how to hook a COM port under Linux

