
The way PC-based instrumentation should be

DI-159
PLC Data Acquisition Device

User's Manual
Manual Revision A

Copyright © 2013 by DATAQ Instruments, Inc. The Information contained herein is the exclusive property

of DATAQ Instruments, Inc., except as otherwise indicated and shall not be reproduced, transmitted, tran-

scribed, stored in a retrieval system, or translated into any human or computer language, in any form or by

any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise without expressed

written authorization from the company. The distribution of this material outside the company may occur

only as authorized by the company in writing.

Portions Copyright © 2008-2011; All rights reserved. http://www.cpustick.com.

DATAQ Instruments' hardware and software products are not designed to be used in the diagnosis and treat-

ment of humans, nor are they to be used as critical components in any life-support systems whose failure to

perform can reasonably be expected to cause significant injury to humans.

DATAQ, the DATAQ logo, and WINDAQ are registered trademarks of DATAQ Instruments, Inc. All rights

reserved.

DATAQ Instruments, Inc.

241 Springside Drive

Akron, Ohio 44333 U.S.A.

Telephone: 330-668-1444

Fax: 330-666-5434

Designed and manufactured in the

United States of America

http://www.cpustick.com/

Warranty and Service Policy
Product Warranty

DATAQ Instruments, Inc. warrants that this hardware will be free from defects in materials

and workmanship under normal use and service for a period of 90 days from the date of ship-

ment. DATAQ Instruments' obligations under this warranty shall not arise until the defective

material is shipped freight prepaid to DATAQ Instruments. The only responsibility of DATAQ

Instruments under this warranty is to repair or replace, at its discretion and on a free of charge

basis, the defective material.

This warranty does not extend to products that have been repaired or altered by persons other

than DATAQ Instruments employees, or products that have been subjected to misuse, neglect,

improper installation, or accident.

DATAQ Instruments shall have no liability for incidental or consequential damages of any

kind arising out of the sale, installation, or use of its products.

Service Policy

1. All products returned to DATAQ Instruments for service, regardless of warranty status,

must be on a freight-prepaid basis.

2. DATAQ Instruments will repair or replace any defective product within 5 days of its

receipt.

3. For in-warranty repairs, DATAQ Instruments will return repaired items to the buyer

freight prepaid. Out of warranty repairs will be returned with freight prepaid and added

to the service invoice.

Introduction

This manual contains information designed to familiarize you with the features and functions of

the DI-159 PLC data acquisition starter kit.

The DI-159 PLC provides a USB port interface and can be used under any operating system

that can run a terminal emulator and hook a COM port. A connected terminal emulator pro-

vides direct access to the DI-159 PLC’s embedded BASIC programming environment and,

depending upon the emulator, the ability to save and load an unlimited number of programs

beyond the DI-159 PLC’s built-in flash memory limit of three. Emulators that are available

online for free are Terminator and Konsole (Linux), iTerm2 (OS X), and PuTTY and Ter-

aTerm (Windows).

DATAQ has provided a Windows terminal emulator program to use with all DATAQ Instru-

ments PLC devices.

Features

The DI-159 PLC (programmable logic controller) data acquisition instrument is a portable con-

trol module that communicates through your computer's USB port. Power is derived from the

interface port so no external power is required while the instrument remains tethered to a PC.

An optional power supply (part number 101085) powers the instrument in a stand-alone con-

figuration. Features include:

l Embedded BASIC (StickOS) programming environment for control applications.

l 8 fixed differential analog inputs protected to ±150V (transient); ±10V full scale meas-

urement range (output is in millivolts).

l 4 digital inputs protected to ±30V; TTL threshold levels.

l 4 digital outputs protected to ±30V; 0.5A sink current max.

l 1 general-purpose push-button.

l 2 general-purpose LEDs.

l 1 heartbeat LED for easy indication of system activity.

Analog Inputs

The DI-159 features eight differential analog inputs located on two sixteen-position screw ter-

minal blocks for easy connection and operation (other terminals used for digital I/O). Connect

the DI-159 PLC to any pre-amplified signal in the typical range of ±5 to ±10VFS. Please note:

The DI-159 does not support analog outputs.

3

DI-159 PLC Hardware Manual Introduction

Digital Inputs

The DI-159 contains four digital lines (bits) to access and process external, discrete (on/off)

events. Connect switch closures or discrete levels with a maximum input of 30V and a thresh-

old of 1.8V. The inputs float at 1 level, about 3.3V relative to the "-" terminal, and require sink-

ing about 50uA to bring them down to 0.8V and guarantee a 0.

Digital Outputs

The DI-159 contains four general purpose digital output lines (30 VDC or peak AC, 500 mA

max) to initiate external discrete (on/off) control.

Software

StickOS BASIC is embedded in the device for easy programming and is accessible via any ter-

minal emulator program that can hook a COM port. The DI-159 includes a free Windows-

based terminal emulator software program to communicate with the device (available via down-

load at http://www.dataq.com/159).

StickOS(TM)

The embedded programming environment (StickOS) provides BASIC language applications.

See StickOS in this documentation for more information.

DATAQ PLC Terminal

The DATAQ Instruments PLC Terminal program provides an interface to communicate and

program the DI-159 in a Windows environment (Windows XP and above). See DATAQ

Instruments Terminal Emulator for more information.

Other Drivers and Terminals (Linux)

The DI-159 PLC is compatible with any terminal emulator software that can hook a com port.

In order to program the device a generic driver should be installed first. Linux has two different

generic drivers, which are appropriate for a USB to COM port converter. The first is an

Abstract Control Model driver designed for modem devices, and is simply named acm. The

other one is a generic USB to serial driver named usbserial. DATAQ Instruments does not sup-

port non-Windows drivers or their installation, nor do they support any other terminal emulator

program.

4

http://www.dataq.com/159
http://www.cpustick.com/
http://www.cpustick.com/

Specifications
Analog Inputs
Number of Channels: 8

Channel Configuration: Differential

Voltage Measurement Range: ±10V Full Scale

Input impedance: 2 MΩ, differential

Isolation: none

Overall inaccuracy: ±64mV (at 25°C)

Minimum common mode rejec-

tion:
40db @ 50-60 Hz and @ 25°C

Max input without damage: ±75 V peak continuous; ±150 V peak, one minute or less

Max common mode voltage: ±10V

Analog frequency response: -3db @ 1,000 Hz

Digital Inputs
Number of Channels: 4

Pull-up value: 47 KΩ

Isolation: none

Input high voltage threshold: 1.8 V minimum

Input low voltage threshold: 1.4 V maximum

Absolute maximum values: ±30 VDC

ADC Characteristics

Resolution:

Overall: approx. 1 part in 1,024 (10-bit)

Above zero: approx. 1 part in 511

Below zero: approx. 1 part in 512

Max. sample throughput rate:
10,000 Hz - 11,000 Hz for 11 enabled channels (8 analog,

3 digital)

Min. sample throughput rate: 11.44 Hz (0.000350 Hz with WinDaq software)

Sample rate timing accuracy: 50 ppm

Digital Outputs
Number of Channels: 4

Isolation: none

Absolute max ratings:
>Voltage: 30 VDC or peak AC

Sink current: 0.5 A

5

DI-159 PLC Hardware Manual Specifications

Source current: 3 mA

On resistance < 2Ω

Power
Power Consumption: <1.0 Watt, via USB interface

Indicators and Connections
Interface: USB 2.0 (mini-B style connector)

Indicators (LED):
Three. Two for general-purpose use, one reserved for activ-

ity indication.

Push button: General-purpose use.

Input Connections: Two 16-position terminal strips

Environmental
Operating Temperature: 0°C to 35°C (32°F to 95°F)

Operating Humidity: 0 to 90% non-condensing

Storage Temperature: -20°C to 45°C (-4°F to 113°F)

Storage Humidity: 0 to 90% non-condensing

Physical Characteristics
Enclosure: Hardened Plastic

Mounting: Desktop; bulkhead

Dimensions:
2.625D × 5.5W × 1.53H in.

(6.67D × 13.97W × 3.89H cm.)

Weight: < 4 oz. (< 140 grams)

Software Support
Embedded: StickOS(TM) BASIC (www.cpustick.com)

Downloadable:

DI-159 PLC Windows-based Utility software for terminal

emulation, program archive, and data logging. Supports

Windows XP and both 32- and 64-bit versions of Win-

dows Vista, Windows 7, and Windows 8.

6

http://www.cpustick.com/

Installation

The following items are included with each DI-159 PLC. Verify that you have the following:

l A DI-159 PLC data acquisition instrument.

l USB cable.

l A DATAQ Instruments screwdriver for signal lead connections.

If an item is missing or damaged, call DATAQ Instruments at 330-668-1444. We will guide

you through the appropriate steps for replacing missing or damaged items. Save the original

packing material in the unlikely event that your unit must, for any reason, be sent back to

DATAQ Instruments.

Installing Windows Drivers

USB Drivers for the DI-159 PLC can be installed via a downloadable executable directly from

the DATAQ Instruments web site. No CD is shipped with the device. If you are going to

install and run the DATAQ Instruments DI-159 PLC Terminal Emulator program, you do not

need to install the drivers separately - the Terminal installation program will also install the driv-

ers (see DATAQ Instruments Terminal Emulator for installation instructions).

1. Disconnect all DATAQ Instruments USB devices from your Computer.

2. Go to http://www.dataq.com/159 in your web browser.

7

http://www.dataq.com/159

DI-159 PLC Hardware Manual Installation

3. The DI-159 uses the same driver as the DI-145. Click on the Windows DI-145 USB

Driver link.

4. Save the file to your local hard drive.

5. Double-click on the downloaded file (145usbdriver.EXE) to extract the program and

begin software installation.

6. Driver installation is complete.

You can now plug the device(s) into your PC and connect via your chosen terminal program.

Go to DATAQ Terminal Emulator for instructions installing and running the DATAQ Instru-

ments PLC terminal program.

Connecting the Instrument to Your Computer

DI-159 instruments can be connected to your computer’s USB port using the provided USB

cable. No external power is required. Connect one end of the communications cable to the

instrument port and the other to your PC’s port.

Note: Use a powered USB hub or a USB port on your PC. Non-powered USB hubs may

not have sufficient power to run the instrument.

8

http://www.dataq.com/145/145usbdriver.EXE
http://www.dataq.com/145/145usbdriver.EXE
http://www.dataq.com/145/145usbdriver.EXE
http://www.dataq.com/145/145usbdriver.EXE
http://www.dataq.com/145/145usbdriver.EXE

Controls, Indicators, and Connections

Please note: The SD card slot is not used in the DI-159. Allowing foreign materials to

enter the device through the SD card slot may result in damage to the instrument.

Mini-B USB Connection

Use the supplied USB cable to connect and power the instrument through your computer’s

USB port.

Connecting Input Signals

All input signal connections are made to the 16-port screw terminals. Each terminal is labeled

directly on the instrument case.

DI-159 Signal Connections

Refer to the following for screw terminal port identification.

9

DI-159 PLC Hardware Manual Controls, Indicators, and Connections

Analog Inputs Ch#: Analog channels 0-7 (±10VFS, ±150V transient max.)

Digital Inputs: General purpose digital inputs (bits 0-3).

Digital Outputs: General purpose digital outputs (bits 0-3).

Connect Analog Input Channel 0

Use the following diagram to connect Analog Input Channel 0.

Connecting Signal Leads

To connect signal leads to the DI-159:

1. Insert the stripped end of a signal lead into the desired terminal directly under the screw.

10

Controls, Indicators, and Connections DI-159 PLC Hardware Manual

2. Tighten the pressure flap by rotating the screw clockwise with a small screwdriver. Make

sure that the pressure flap tightens only against the signal wire and not the wire insulation. Do

not over-tighten.

3. Tug gently on the signal lead to ensure that it is firmly secured.

Digital Inputs

The DI-159 contains 4 general purpose digital inputs. Valid signals are switch closures or dis-

crete levels with a maximum input of 30 V and a threshold of 1.8 V.

Digital Outputs

The DI-159 contains 4 general purpose digital outputs to allow the DI-159 to initiate external

discrete control. Loads up to 30V peak and 500mA are supported.

11

DI-159 PLC Hardware Manual Controls, Indicators, and Connections

LED Indicators

The DI-159 provides three green LEDs for instrument status and notification.

Led0 and Led1: General-purpose LEDs.

Heartbeat: Indicates the device is powered (slow heartbeat at once per second) or when

a program is running (fast heartbeat at about 4 times per second).

Push Button

The DI-159 provides a general-purpose push button whose function is defined by the program

written to the device.

12

StickOS

StickOS is a BASIC programming engine embedded in the DI-159 PLC. It offers transparent

line-by-line compilation, as well as integer variable, string variable, and array support. Block-

structured programming is also supported using easily-recognized IF, FOR, WHILE, DO, and

GOSUB constructs. Use any terminal program that can hook a com port to connect to and pro-

gram the DI-159 PLC.

Quick Reference Guide

Command Line

StickOS Commands

Help Command

Entering Programs

Running Programs

Loading and Storing Programs

Debugging Programs

Other Commands

BASIC Program Statements

Variable Declarations

System Variables

Variable Assignments

Expressions

Strings

Print Statements

Variable Print Statements

Input Statements

13

http://www.cpustick.com/

DI-159 PLC Hardware Manual StickOS

Read/Data Statements

Conditional Statements

Looping Conditional Statements

Subroutines

Timers

Digital I/O

Analog Input

Frequency Output

Other Statements

14

StickOS DI-159 PLC Hardware Manual

StickOS Quick Reference

Commands | Device Statements | Expressions | Strings | General Statements | Modes | Block

Statements | Variables

Commands
<Ctrl-C> stop running program

auto [line] automatically number program lines

clear [flash] clear ram [and flash] variables

cls clear terminal screen

cont [line] continue program from stop

delete ([line][-[line]]|subname) delete program lines

dir list saved programs

editline edit program line

help [topic] online help

list ([line][-[line]]|subname) list program lines

load name load saved program

memory print memory usage

new erase code ram and flash memories

purge name purge saved program

renumber [line] renumber program lines (and save)

run [line] run program

save [name|library] save code ram to flash memory

undo undo code changes since last save

upgrade upgrade StickOS firmware!

Uptime print time since last reset

Device Statements
timers:

configure timer n for n (s|ms|us)

on timer n do statement

off timern disable timer interrupt

mask timern mask/hold timer

interrupt unmask timer n unmask timer interrupt

watchpoints:

on expression do statement

off expression disable expr watchpoint

mask expression mask/hold expr watchpoint

unmask expression unmask expr watchpoint

15

DI-159 PLC Hardware Manual StickOS

Expressions
the following operators are supported as in C, in order of decreasing precedence:

n decimal constant

0xn hexadecimal constant

'c’ character constant

variable simple variable

variable[expression] array variable element

variable# length of array or string

() grouping

! ~ logical not, bitwise not

* / % multiply, divide, mod

+ - add, subtract

>> << shift right, left

<= < >= > inequalities

== != equal, not equal

| ^ & bitwise or, xor, and

|| ^^ && logical or, xor, and

Strings
V$ is a null-terminated view into a byte array v[]

string statements:

dim, input, let, print,

vprint

if expression relation

expression then

while expression relation

expression

do until expression rela-

tion expression

string expressions:

"literal" literal string

variable$ variable string variable$

[start:length] variable substring

+ concatenates strings

string relations:

<= < >= > inequalities

== != equal, not equal

~ !~ contains, does not contain

General Statements

16

StickOS DI-159 PLC Hardware Manual

Line delete program line

line statement // comment enter program line

variable[$] = expression, ... assign variable

? [dec|hex|raw] expression, ...[;] print strings/expressions

assert expression break if expression is false

data n [, ...] read-only data

dim variable[$][[n]] [as ...], ... dimension variables

end end program

halt loop forever

input [dec|hex|raw] variable[$], ... input data

label label read/data label

let variable[$] = expression, ... assign variable

print [dec|hex|raw] expression, ...[;] print strings/expressions

read variable [, ...] read data into variables

rem remark remark

restore [label] restore data pointer

sleep expression (s|ms|us) delay program execution

stop insert breakpoint in code

vprint var[$]=[dec|hex|raw] expr, ... print to variable

Modes
analog [millivolts] set analog voltage scale

autorun [on|off] autorun mode (on reset)

echo [on|off] terminal echo mode

indent [on|off] listing indent mode

numbers [on|off] listing line numbers mode

pins [assign [pinname|none]] set/display pin assignments

prompt [on|off] terminal prompt mode

step [on|off] debugger single-step mode

trace [on|off] debugger trace mode

watchsmart [on|off] low-overhead watchpoint mode

Block Statements
if expression then

[elseif expression then] [else]

endif

for variable = expression to expression [step expression]

[(break|continue) [n]]

next

while expression do

[(break|continue) [n]] endwhile

17

DI-159 PLC Hardware Manual StickOS

do

[(break|continue) [n]]

until expression

gosub subname [expression, ...]

sub subname [param, ...] [return]

endsub

Variables
all variables must be dimensioned

variables dimensioned in a sub are local to that sub

simple variables are passed to sub params by reference

array variable indices start at 0

v is the same as v[0], except for input/print statements

ram variables:

dim var[$][[n]]

dim var[[n]] as (byte|short)

flash parameter variables:

dim varflash[[n]] as flash

pin alias variables:

dim varpin[[n]] as pin pinname for \ (digital|analog|frequency) \ (input|output) \

absolute variables:

dim varabs[[n]] at address addr

dim varabs[[n]] as (byte|short) at addressaddr

system variables (read-only): analog, getchar, keychar, msecs, nodeid, random, sec-

onds, ticks, ticks_per_msec

18

StickOS DI-159 PLC Hardware Manual

Command Lines

In the command and statement specifications that follow, the following nomenclatures are used:

bold literal text; enter exactly as shown

italics parameterized text; enter actual parameter value

(alternate1| alternate2| ...) alternated text; enter exactly one alternate value

regular displayed by StickOS

<key> press this key

To avoid confusion with array indices (specified by [...]), optional text will always be called

out explicitly, either by example or by text, rather than nomenclated with the traditional [...].

Command-line editing is enabled via the terminal keys:

key function

← move cursor left

→ move cursor right

↑ recall previous history line

↓ recall next history line

<Home> move cursor to start of line

<End> move cursor to end of line

<Backspace> delete character before cursor

<Delete> delete character at cursor

<Ctrl-C> clear line (also stops running program)

<Enter> enter line to StickOS

If you enter a command or statement in error, StickOS will indicate the position of the error,

such as:

> print i forgot to use quotes

error - ^

> _

19

DI-159 PLC Hardware Manual StickOS

StickOS Commands

StickOS commands are used to control the StickOS BASIC program. Unlike BASIC program

statements, StickOS commands cannot be entered into the StickOS BASIC program with a line

number.

Help Command

Entering Programs

Running Programs

Loading and Storing Programs

Debugging Programs

Other Commands

20

StickOS DI-159 PLC Hardware Manual

Help Command

The help command displays the top level list of help topics:

help

To get help on a subtopic, use the command:

helpsubtopic

Examples
> help

for more information:

help about

help commands

help modes

help statements

help blocks

help devices

help expressions

help strings

help variables

help pins

see also:

http://www.cpustick.com

> help commands

<Ctrl-C>

auto <line>

clear [flash]

cls

cont [<line>]

delete ([<line>][-][<line>]|<s-

ubname>)

download <slave Hz>

dir

edit <line>

help [<topic>]

list ([<line>][-][<line>]|<s-

ubname>)

load <name>

memory

new

profile ([<line>][-][<line>]|<s-

ubname>)

purge <name>

renumber [<line>]

reset

-- stop program

-- automatically number program

lines

-- clear ram [and flash] var-

iables

-- clear terminal screen

-- continue program from stop

-- delete program lines

-- download flash to slave DI-

159 PLC

-- list saved programs

-- edit program line

-- online help

-- list program lines

-- load saved program

-- print memory usage

-- erase code ram and flash mem-

ories

-- display profile info

-- purge saved program

21

DI-159 PLC Hardware Manual StickOS

run [<line>]

save [<name>]

undo

upgrade

uptime

for more information:

help modes

-- renumber program lines (and

save)

-- reset the DI-159 PLC!

-- run program

-- save code ram to flash mem-

ory

-- undo code changes since last

save

-- upgrade StickOS firmware!

-- print time since last reset

> _

22

StickOS DI-159 PLC Hardware Manual

Entering Programs

To enter a statement into the BASIC program, precede it with a line number identifying its posi-

tion in the program:

line statement

If the specified line already exists in the BASIC program, it is overwritten.

To delete a statement from the BASIC program, enter just its line number:

line

To edit an existing line of the BASIC program via command-line editing, use the command:

edit line

A copy of the unchanged line is also stored in the history buffer.

Note that statements are initially entered into a RAM buffer to avoid excessive writes to flash

memory, and therefore can be lost if the DI-159 PLC is reset or loses power before the pro-

gram has been saved. When a program is run, the (newly edited) statements in RAM are seam-

lessly merged with the (previously saved) statements in flash memory, to give the appearance

of a single "current program", at a slight performance penalty. When the newly edited program

is subsequently saved again, the merged program is re-written to flash and the RAM buffer is

cleared, resulting in maximum program performance. If the RAM buffer fills during program

entry, an "auto save" is performed to accelerate the merging process.

To automatically number program lines as you enter them, use the command:

auto

auto line

Enter two blank lines to terminate automatic line numbering.

Note that you can edit a BASIC program in a text editor, without line numbers, and then paste

it into the terminal emulator window with automatic line numbering, and then enter two blank

lines to terminate automatic line numbering.

To list the BASIC program, or a range of lines from the BASIC program, use the command:

list

list line

list-line

23

DI-159 PLC Hardware Manual StickOS

list line-

list line-line

Alternately, you can list an entire subroutine by name with the command:

list subname

To set the listing indent mode, use the command:

indent (on|off)

To display the listing indent mode, use the command:

indent

If the listing indent mode is on, nested statements within a block will be indented by two char-

acters, to improve program readability.

To set the line numbering mode, use the command:

numbers (on|off)

To display the line numbering mode, use the command:

numbers

Note that unnumbered listings are useful to paste back in to the "auto" command which auto-

matically supplies line numbers to program statements.

To delete a range of lines from the BASIC program, use the command:

delete line

delete -line

delete line-

delete line-line

Alternately, you can delete an entire subroutine by name with the command:

delete subname

To undo changes to the BASIC program since it was last saved (or renumbered, or new'd, or

loaded), use the command:

undo

24

StickOS DI-159 PLC Hardware Manual

To save the BASIC program permanently to flash memory, use the command:

save

Note that any unsaved changes to the BASIC program will be lost if the DI-159 PLC is reset

or loses power.

To renumber the BASIC program by 10's and save the BASIC program permanently to flash

memory, use the command:

renumber

To delete all lines from the BASIC program, use the command:

new

Examples
> 10 dim a

> 20 for a = 1 to 10

> auto 30

> 30 print a

> 40 next

> 50

> 60

> save

> list 20-40

20 for a = 1 to 10

30 print a

40 next

end

> delete 20-40

> list

10 dim a

end

> undo

> list

10 dim a

20 for a = 1 to 10

30 print a

40 next

end

> 1 rem this is a comment

> list

1 rem this is a comment

10 dim a

25

DI-159 PLC Hardware Manual StickOS

20 for a = 1 to 10

30 print a

40 next

end

> renumber

> list

10 rem this is a comment

20 dim a

30 for a = 1 to 10

40 print a

50 next

end

> new

> list

end

> _

26

StickOS DI-159 PLC Hardware Manual

Running Programs

To run the BASIC program currently loaded in memory, use the command:

run

Alternately, to run the program starting at a specific line number, use the command:

run line

To stop a running BASIC program, press:

<Ctrl-C>

To continue a stopped BASIC program, use the command:

cont

Alternately, to continue a stopped BASIC program from a specific line number, use the com-

mand:

cont line

To set the autorun mode for the saved BASIC program, use the command:

autorun (on|off)

This takes effect after the next DI-159 PLC reset.

To display the autorun mode for the saved BASIC program, use the command:

autorun

If the autorun mode is on, when the DI-159 PLC is reset, it will start running the saved BASIC

program automatically.

Note that any unsaved changes to the BASIC program will be lost if the DI-159 PLC is reset

or loses power.

Examples
> 10 dim a

> 20 while 1 do

> 30 let a = a+1

27

DI-159 PLC Hardware Manual StickOS

> 40 endwhile

> save

> run

<Ctrl-C>

STOP at line 40!

> print a

5272

> cont

<Ctrl-C>

STOP at line 30!

> print a

11546

> autorun

off

> autorun on

> _

28

StickOS DI-159 PLC Hardware Manual

Loading and Storing Programs

The "current program" has no name and is saved and run by default. In addition to the current

program, StickOS can load and store two named BASIC programs in the DI-159. Named pro-

grams are simply copies of the current program that can be retrieved at a later time, but are

otherwise unaffected by all other StickOS commands than these.

To display the list of currently stored named programs, use the command:

dir

To store the current program under the specified name, use the command:

save name

To load a named stored program to become the current program, use the command:

load name

To purge (erase) a stored program, use the command:

purge name

Examples
> 10 dim a

> 20 while 1 do

> 30 let a = a+1

> 40 endwhile

> dir

> save spinme

> dir

spinme

> new

> list

end

> load spinme

> list

10 dim a

20 while 1 do

30 let a = a+1

40 endwhile

end

> purge spinme

> dir

> _

29

DI-159 PLC Hardware Manual StickOS

Debugging Programs

There are a number of techniques you can use for debugging StickOS BASIC programs.

The simplest debugging technique is simply to insert print statements in the program at strategic

locations, and display the values of variables.

A more powerful debugging technique is to insert one or more breakpoints in the program,

with the following statement:

line stop

When program execution reaches line, the program will stop and then you can use immediate

mode to display or modify the values of any and all variables.

To continue a stopped BASIC program, use the command:

cont

cont line

An even more powerful debugging technique is to insert one or more conditional breakpoints

in the program, with the following statement:

line assert expression

When the program execution reaches line, expression is evaluated, and if it is false (i.e., 0), the

program will stop and you can use immediate mode to display or modify the values of any and

all variables.

Again, to continue a stopped BASIC program, use the command:

cont

cont line

The most powerful debugging technique, though also the most expensive in terms of program

performance, is to insert a watchpoint expression in the program, with the following statement

line on expression do statement

The watchpoint expression is re-evaluated before every line of the program is executed; if the

expression transitions from false to true, the watchpoint statement handler runs.

When debugging, the statement handler is typically a "stop" statement, such as:

line on expression do stop

30

StickOS DI-159 PLC Hardware Manual

This will cause the program to stop as soon as the specified expression becomes true, such as

when a variable or pin takes on an incorrect value.

To set the smart watchpoint mode, which dramatically reduces watchpoint overhead at a slight

delay of input pin sensitivity, use the command:

watchsmart (on|off)

To display the smart watchpoint mode, use the command:

watchsmart

At any time when a program is stopped, you can enter BASIC program statements at the com-

mand-line with no line number and they will be executed immediately; this is called "imme-

diate mode". This allows you to display the values of variables, with an immediate mode

statement like:

print expression

It also allows you to modify the value of variables, with an immediate mode statement like:

let variable = expression

Note that if an immediate mode statement references a pin variable, the live DI-159 PLC pin is

examined or manipulated, providing a very powerful debugging technique for the embedded

system itself!

Thanks to StickOS's transparent line-by-line compilation, you can also edit a stopped BASIC

program and then continue it, either from where you left off or from another program location!

When the techniques discussed above are insufficient for debugging, two additional techniques

exist -- single-stepping and tracing.

To set the single-step mode for the BASIC program, use the command:

step (on|off)

To display the single-step mode for the BASIC program, use the command:

step

While single-step mode is on, the program will stop execution after every statement, as if a stop

statement was inserted after every line.

31

DI-159 PLC Hardware Manual StickOS

Additionally, while single-step mode is on, pressing <Enter> (essentially entering what would

otherwise be a blank command) is the same as the cont command.

To set the trace mode for the BASIC program, use the command:

trace (on|off)

To display the trace mode for the BASIC program, use the command:

trace

While trace mode is on, the program will display all executed lines and variable modifications

while running.

Examples
> 10 dim a, sum

> 20 for a = 1 to 10000

> 30 let sum = sum+a

> 40 next

> 50 print sum

> run

50005000

> 25 stop

> run

STOP at line 25!

> print a, sum

1 0

> cont

STOP at line 25!

> print a, sum

2 1

> 25 assert a != 5000

> cont

assertion failed

STOP at line 25!

> print a, sum

5000 12497500

> cont

50005000

> delete 25

> trace

off

> step

off

> trace on

32

StickOS DI-159 PLC Hardware Manual

> step on

> list

10 dim a, sum

20 for a = 1 to 10000

30 let sum = sum+a

40 next

50 print sum

end

> run

10 dim a, sum

STOP at line 10!

> cont

20 for a = 1 to 10000

let a = 1

STOP at line 20!

> <Enter>

30 let sum = sum+a

let sum = 1

STOP at line 30!

> <Enter>

40 next

let a = 2

STOP at line 40!

> <Enter>

30 let sum = sum+a

let sum = 3

STOP at line 30!

> _

33

DI-159 PLC Hardware Manual StickOS

Other Commands

To clear BASIC program variables, and reset all pins to digital input mode, use the command:

clear

This command is also used after a stopped program has defined program variables and before

redefining program variables in "immediate" mode, to avoid duplicate definition errors without

having to erase the program with a "new" command.

To clear BASIC program variables, including flash parameters, use the command:

clear flash

To display the StickOS memory usage, use the command:

memory

To reset the DI-159 PLC as if it was just powered up, use the command:

reset

Note that the reset command inherently breaks the USB or Ethernet connection between the

DI-159 PLC and host computer; press the "Disconnect" button followed by the "Call" button,

to reconnect Hyper Terminal.

To clear the terminal screen, use the command:

cls

To display the time since the DI-159 PLC was last reset, use the command:

uptime

Examples
> memory

0% ram code bytes used

0% flash code bytes used

0% ram variable bytes used

0% flash parameter bytes used

0% variables used

> 10 dim a[100]

> 20 rem this is a loooooooooooooooooooooooooooong line

> run

34

StickOS DI-159 PLC Hardware Manual

> memory

4% ram code bytes used (unsaved changes!)

0% flash code bytes used

19% ram variable bytes used

0% flash parameter bytes used

1% variables used

> save

> memory

0% ram code bytes used

1% flash code bytes used

19% ram variable bytes used

0% flash parameter bytes used

1% variables used

> clear

> memory

0% ram code bytes used

1% flash code bytes used

0% ram variable bytes used

0% flash parameter bytes used

0% variables used

> list

10 dim a[100]

20 rem this is a loooooooooooooooooooooooooooong line

end

> uptime

1d 15h 38m

> reset

_

35

DI-159 PLC Hardware Manual StickOS

Basic Program Statements

BASIC Program statements are typically entered into the StickOS BASIC program with an

associated line number, and then are executed when the program runs.

Most BASIC program statements can also be executed in immediate mode at the command

prompt, without a line number, just as if the program had encountered the statement at the cur-

rent point of execution.

Variable Declarations

System Variables

Variable Assignments

Expressions

Strings

Print Statements

Variable Print Statements

Input Statements

Read/Data Statements

Conditional Statements

Looping Conditional Statements

Subroutines

Timers

Digital I/O

Analog Input

Frequency Output

Other Statements

36

StickOS DI-159 PLC Hardware Manual

Variable Declarations

All variables must be dimensioned prior to use. Accessing undimensioned variables results in

an error and a value of 0.

Simple RAM variables

Simple RAM variables can be dimensioned as either integer (32 bits, signed, by default), short

(16 bits, unsigned), or byte (8 bits, unsigned) with the following statements:

dim var

dim var as (short|byte)

Multiple variables can be dimensioned in the same statement, by separating them with commas:

dim var [as ...], var [as ...], ...

If no variable size (short or byte) is specified in a dimension statement, integer is assumed;

if no as ... is specified, a RAM variable is assumed.

Array RAM variables

Array RAM variables can be dimensioned with the following statements:

dim var[n]

dim var[n] as (short|byte)

Note that simple variables are really just array variables with only a single array element in

them, so the array element var[0] is the same as var, and the dimension dim var[1] is

the same as dim var.

String RAM variables

String RAM variables can be dimensioned with the following statements:

dim var$[n]

Where n is the length of the array. Array indices start at 0 and end at the length of the array

minus one.

Note also that string variables are really just a null-terminated view into a byte array variable.

37

DI-159 PLC Hardware Manual StickOS

DI-159 PLC register variables

Variables can also be dimensioned as DI-159 PLC register variables at absolute addresses with

the following statements:

dim varabs at address addr

dim varabs as (short|byte) at address addr

dim varabs[n] at address addr

dim varabs[n] as (short|byte) at address addr

Note that you can trivially crash your DI-159 PLC by accessing registers incorrectly.

Persistent integer (32 bits) flash variables

Variables can also be dimensioned as persistent integer (32 bits) flash variables with the fol-

lowing statements:

dim varflash as flash

dim varflash[n] as flash

Persistent flash variables retain their values from one run of a program to another (even if

power is lost between runs), unlike RAM variables which are cleared to 0 at the start of every

run.

Note that since flash memory has a finite life (100,000 writes, typically), rewriting a flash var-

iable should be a rare operation reserved for program configuration changes, etc. To attempt to

enforce this, StickOS delays all flash variable modifications by 0.5 seconds (the same as all

other flash memory updates).

Pin variables

Finally, variables can be dimensioned as pin variables, used to manipulate or examine the state

of DI-159 PLC I/O pins with the following statements:

dim varpin as pin pinname for (digital|analog|frequency)

(input|output)

dim varpin[n] as pin pinname for (digital|analog|frequency)

(input|output)]

These are discussed in detail below, in the sections on Digital I/O, Analog Input, and

Frequency Output.

Examples
> new

38

StickOS DI-159 PLC Hardware Manual

> 10 dim array[4], b, volatile

> 20 dim led as pin dtin0 for digital output

> 30 dim potentiometer as pin an0 for analog input

> 40 dim persistent as flash

> 50 for b = 0 to 3

> 60 let array[b] = b*b

> 70 next

> 80 for b = 0 to 3

> 90 print array[b]

> 100 let led = !led

> 110 next

> 120 print "potentiometer is", potentiometer

> 130 print "volatile is", volatile

> 140 print "persistent is", persistent

> 150 let persistent = persistent+1

> run

0

1

4

9

potentiometer is 1745

volatile is 0

persistent is 0

> run

0

1

4

9

potentiometer is 1745

volatile is 0

persistent is 1

> dim pcntr0 as short at address 0x40150004

> print pcntr0

5338

> print pcntr0

2983

> _

39

DI-159 PLC Hardware Manual StickOS

System Variables

The following system variables may be used in expressions or simply with "print" statements to

examine internal system state. These variables are all read-only.

analog analog supply millivolts

getchar most recent console character

keychar most recent keypad character

msecs number of milliseconds since boot

seconds number of seconds since boot

ticks number of ticks since boot

ticks_per_msec number of ticks per millisecond

Examples
> print seconds, ticks, ticks/1000

2640 10562152 10562

>

40

StickOS DI-159 PLC Hardware Manual

Variable Assignments

Simple variables are assigned with the following statement:

let variable = expression

If the variable represents an output "pin variable", the corresponding DI-159 PLC output pin is

immediately updated.

Similarly, array variable elements are assigned with the following statement:

let variable[expression] = expression

Where the first expression evaluates to an array index between 0 and the length of the array

minus one, and the second expression is assigned to the specified array element.

String variables are assigned with the following statement:

let variable$ = string

Multiple variables may be assigned in a single statement by separating them with commas:

let var1 = expr1, var2 = expr2, ...

Examples
> 10 dim simple, array[4]

> 20 while simple<4 do

> 30 let array[simple] = simple*simple

> 40 let simple = simple+1

> 50 endwhile

> 60 for simple = 0 to 3

> 70 print array[simple]

> 80 next

> run

0

1

4

9

> new

> 10 dim a$[20]

> 20 let a$="hello"+" "+"world!"

> 30 print a$

> run

hello world!

41

DI-159 PLC Hardware Manual StickOS

Expressions

StickOS BASIC expressions are very similar to C expressions, and follow similar precedence

and evaluation order rules.

The following operators are supported, in order of decreasing precedence:

n decimal constant

0xn hexadecimal constant

'c’ character constant

variable simple variable

variable[expression] array variable element

variable# length of array or string

() grouping

! ~ logical not, bitwise not

* / % multiply, divide, mod

+ - add, subtract

>> << shift right, left

<= < >= > inequalities

== != equal, not equal

| ^ & bitwise or, xor, and

|| ^^ && logical or, xor, and

The plus and minus operators can be either binary (taking two arguments, one on the left and

one on the right) or unary (taking one argument on the right); the logical and bitwise not oper-

ators are unary. All binary operators evaluate from left to right; all unary operators evaluate

from right to left.

Note that the # operator evaluates to the length of the array or string variable whose name pre-

cedes it.

Logical and equality/inequality operators, above, evaluate to 1 if true, and 0 if false. For con-

ditional expressions, any non-0 value is considered to be true, and 0 is considered to be false.

If the expression references an input "pin variable", the corresponding DI-159 PLC input pin is

sampled to evaluate the expression.

Note that when StickOS parses an expression and later displays it (such as when you enter a

program line and then list it), what you are seeing is a de-compiled representation of the com-

piled code, since only the compiled code is stored, to conserve RAM and flash memory. So

42

StickOS DI-159 PLC Hardware Manual

superfluous parenthesis (not to mention spaces) will be removed from the expression, based on

the precedence rules above.

Examples
> 10 print 2*(3+4)

> 20 print 2+(3*4)

> list

10 print 2*(3+4)

20 print 2+3*4

end

> run

14

14

> print 3+4

7

> print -3+2

-1

> print !0

1

> print 5&6

4

> print 5&&6

1

> print 3<5

1

> print 5<3

0

> print 3<<1

6

> dim a[7]

> print a#

7

> _

43

DI-159 PLC Hardware Manual StickOS

Strings

StickOS supports string variables as a null-terminated views into byte arrays.

A string variable may be declared, with a maximum length n, with:

dim var$[n]

A string may then be assigned with:

let variable$ = string

Where string is an expression composed of one or more of:

"literal" literal string

variable$ variable string

variable$[start:length] variable substring

+ string concatenation operator

A string may be tested in a conditional statement with a condition of the form:

if string relation string then

while string relation string do

until string relation string

Where relation is one of:

<= < >= > inequalities

== != equal, not equal

~ !~ contains, does not contain

The current length of a string can be represented in an integer expression by:

variable#

Strings may also be explicitly specified in dim, input, let, print, and vprint statements.

Examples
> new

> 10 dim i, a$[10]

> 20 input a$

> 30 for i = 0 to a#-1

44

StickOS DI-159 PLC Hardware Manual

> 40 print a$[i:1]

> 50 next

> run

? hello

h

e

l

l

o

> new

> 10 dim a$[10]

> 20 input a$

> 30 if a$ ~ "y" then

> 40 print "yes"

> 50 else

> 60 print "no"

> 70 endif

> run

? aya

yes

> run

? aaa

no

>

45

DI-159 PLC Hardware Manual StickOS

Print Statements

While the DI-159 PLC is connected to the host computer, print statements can be observed on

the Hyper Terminal console window.

Print statements can be used to print integer expressions, using either a decimal or hexadecimal

output radix, or printing raw ASCII bytes:

print [dec|hex|raw] expression [;]

Or strings:

print string

Or various combinations of both:

print string, [dec|hex|raw] expression, ... [;]

If the expression specifies an array, its entire array contents are printed. If the expression ref-

erences an input "pin variable", the corresponding DI-159 PLC input pin is sampled to eval-

uate the expression.

A trailing semi-colon (;) suppresses the carriage-return/linefeed that usually follows each

printed line.

Note that when the DI-159 PLC is disconnected from the host computer, print statement output

is simply discarded.

Examples
> print "hello world"

hello world

> print 57*84

4788

> print hex 57*84

0x12b4

> print 9, "squared is", hex 9*9

9 squared is 0x51

> dim a[2]

> print a

0 0

> print 1;

1

46

StickOS DI-159 PLC Hardware Manual

Variable Print Statements

Variable print statements can be used to convert strings to integers and vice versa, as well as

integers from decimal to hexadecimal radix, etc. Basically, variable print statements are iden-

tical to print statements, except rather than printing the result to the console, the result is

"printed" to a variable.

Variable print statements can be used to print integer expressions, using either a decimal or hex-

adecimal output radix, or printing raw ASCII bytes:

vprint variable[$] = [dec|hex|raw] expression

Or strings:

vprint variable[$] = string

Or various combinations of both:

vprint variable[$] = string, [dec|hex|raw] expression, ...

In all cases, the resulting output is assigned to the specified integer or string variable. If a type

conversion error occurs (such as assigning a non-integer string to an integer variable), program

execution stops.

Examples
> clear

> dim a, b$[10]

> let b$="123"

> vprint a = b$[0:2]+"4"

> print a

124

> vprint b$ = "hello", a

> print b$

hello 124

> _

47

DI-159 PLC Hardware Manual StickOS

Input Statements

While the DI-159 PLC is connected to the host computer, input statements can be serviced

from the Hyper Terminal console window.

Input statements can be used to input integer expressions, using either a decimal or hex-

adecimal output radix, or input raw ASCII bytes:

input [dec|hex|raw] variable[$], ...

If the variable specifies an array (or a string), the entire array (or string) contents are input. If

the expression references an output "pin variable", the corresponding DI-159 PLC output pin is

immediately updated.

When the input statement is serviced, StickOS prints a prompt to the console:

? _

And the user enters integer or string values, as appropriate, followed by the <Enter> key.

Note that while waiting for input, BASIC interrupt handlers continue to run.

Also, the most recent console input character is available in the system variable "getchar",

which you will typically use as "getchar$".

Note that when the DI-159 PLC is disconnected from the host computer, input statements hang

the program.

Examples
> new

> 10 dim a, b$[20]

> 20 input a, b$

> 30 print a*2, b$

> run

? 12 hello world!

24 hello world!

> _

48

StickOS DI-159 PLC Hardware Manual

Read/Data Statements

A program can declare read-only data in its code statements, and then consume the data at run-

time.

To declare the read-only data, use the data statement as many times as needed:

data n

data n, n, ...

To consume data values and assign them to variables at runtime, use the read statement:

read variable

read variable, variable, ...

If a read is attempted when no more data exists, the program stops with an "out of data" error.

A line may be labeled and the current data consumer pointer may be moved to a specific

(labeled) line with the statements:

label label

restore label

Examples
> 10 dim a, b

> 20 data 1, 2, 3

> 30 data 4

> 40 data 5, 6

> 50 data 7

> 60 while 1 do

> 70 read a, b

> 80 print a, b

> 90 endwhile

> 100 data 8

> run

1 2

3 4

5 6

7 8

out of data

STOP at line 70!

> _

49

DI-159 PLC Hardware Manual StickOS

Conditional Statements

Non-looping conditional statements are of the form:

if expression then

statements

elseif expression then

statements

else

statements

endif

Where statements is one or more program statements and the elseif and else clauses (and their

corresponding statements) are optional.

Alternately, the string form of this statement is:

if string relation string then

statements

elseif string relation string then

statements

else

statements

endif

Examples
> 10 dim a

> 20 for a = -4 to 4

> 30 if !a then

> 40 print a, "is zero"

> 50 elseif a%2 then

> 60 print a, "is odd"

> 70 else

> 80 print a, "is even"

> 90 endif

> 100 next

> run

-4 is even

-3 is odd

-2 is even

-1 is odd

0 is zero

1 is odd

2 is even

3 is odd

50

StickOS DI-159 PLC Hardware Manual

4 is even

> _

51

DI-159 PLC Hardware Manual StickOS

Looping Conditional Statements

Looping conditional statements include the traditional BASIC for-next loop and the more struc-

tured while-endwhile and do-until loops.

The for-next loop statements are of the form:

for variable = expression to expression step expression

statements

next

Where statements is one or more program statements and the step expression clause is optional

and defaults to 1.

The for-next loop expressions are evaluated only once, on initial entry to the loop. The loop var-

iable is initially set to the value of the first expression. Each time the loop variable is within the

range (inclusive) of the first and second expression, the statements within the loop execute. At

the end of the loop, if the incremented loop variable would still be within the range (inclusive)

of the first and second expression, the loop variable is incremented by the step value, and the

loop repeats again. On exit from the loop, the loop variable is equal to the value it had during

the last iteration of the loop.

The while-endwhile loop statements are of the form:

while expression do

statements

endwhile

Where statements is one or more program statements .

Alternately, the string form of this statement is:

while string relation string do

statements

endwhile

The while-endwhile loop conditional expression is evaluated on each entry to the loop. If it is

true (non-0), the statements within the loop execute, and the loop repeats again. On exit from

the loop, the conditional expression is false.

The do-until loop statements are of the form:

do

statements

52

StickOS DI-159 PLC Hardware Manual

until expression

Where statements is one or more program statements .

Alternately, the string form of this statement is:

do

statements

until string relation string

The do-until loop conditional expression is evaluated on each exit from the loop. If it is false

(0), the loop repeats again. On exit from the loop, the conditional expression is true.

In all three kinds of loops, the loop can be exited prematurely using the statement:

break

This causes program execution to immediately jump to the statements following the terminal

statement (i.e., the next, endwhile, or until) of the innermost loop.

Additionally, multiple nested loops can be exited prematurely together using the statement:

break n

Which causes program execution to immediately jump to the statements following the terminal

statement (i.e., the next, endwhile, or until) of the innermost n loops.

Similarly, a loop can be continued, causing execution to resume immediately with the con-

ditional expression evaluation, using the statement:

continue

This causes program execution to immediately jump to the conditional expression evaluation, at

which point the loop may conditionally execute again.

Multiple nested loops can be continued together using the statement:

continue n

Which causes program execution to immediately jump to the conditional expression evaluation

of the innermost n loops.

Examples
> 10 dim a, b, sum

53

DI-159 PLC Hardware Manual StickOS

> 20 while 1 do

> 30 if a==10 then

> 40 break

> 50 endif

> 60 let sum = 0

> 70 for b = 0 to a

> 80 let sum = sum+b

> 90 next

> 100 print "sum of integers 0 thru", a, "is", sum

> 110 let a = a+1

> 120 endwhile

> run

sum of integers 0 thru 0 is 0

sum of integers 0 thru 1 is 1

sum of integers 0 thru 2 is 3

sum of integers 0 thru 3 is 6

sum of integers 0 thru 4 is 10

sum of integers 0 thru 5 is 15

sum of integers 0 thru 6 is 21

sum of integers 0 thru 7 is 28

sum of integers 0 thru 8 is 36

sum of integers 0 thru 9 is 45

> _

54

StickOS DI-159 PLC Hardware Manual

Subroutines

A subroutine is called with the following statement:

gosub subname [expression, ...]

A subroutine is declared with the following statements:

sub subname [param, ...]

statements

endsub

The sub can be exited prematurely using the statement:

return

This causes program execution to immediately return to the statements following the gosub

statement that called the subroutine.

In general, subroutines should be declared out of the normal execution path of the code, and

typically are defined at the end of the program.

Subroutine parameters are essentially variables local to the subroutine which are initialized to

the values of the caller's gosub expressions. Simple variable caller's gosub expression's, how-

ever, are passed to sub param's by reference, allowing the sub to modify the caller's variables;

all other caller's gosub expressions are passed by value.

Note that to force a variable to be passed by value to a subroutine, simply use a trivial expres-

sion like "var+0" in the gosub statement expression.

Note also that to return a value from a subroutine, pass in a simple variable (by reference) and

have the subroutine modify the corresponding param before it returns.

Any variables dimensioned in a subroutine are local to that subroutine. Local variables hide var-

iables of the same name dimensioned in outer-more scopes. Local variables are automatically

un-dimensioned when the subroutine returns.

Examples
> 10 dim a

> 20 for a = 0 to 9

> 30 gosub sumit a

> 40 next

> 50 end

55

DI-159 PLC Hardware Manual StickOS

> 60 sub sumit numbers

> 70 dim a, sum

> 80 for a = 1 to numbers

> 90 let sum = sum+a

> 100 next

> 110 print "sum of integers 0 thru", numbers, "is", sum

> 120 endsub

> run

sum of integers 0 thru 0 is 0

sum of integers 0 thru 1 is 1

sum of integers 0 thru 2 is 3

sum of integers 0 thru 3 is 6

sum of integers 0 thru 4 is 10

sum of integers 0 thru 5 is 15

sum of integers 0 thru 6 is 21

sum of integers 0 thru 7 is 28

sum of integers 0 thru 8 is 36

sum of integers 0 thru 9 is 45

> new

> 10 dim a

> 20 print a

> 30 gosub increment a

> 40 gosub increment a

> 50 print a

> 60 end

> 70 sub increment value

> 80 let value = value+1

> 90 endsub

> run

0

2

> _

56

StickOS DI-159 PLC Hardware Manual

Timers

StickOS supports up to four internal interval timers (0 thru 3) for use by the program. Timer

interrupts are delivered when the specified time interval has elapsed since the previous interrupt

was delivered.

Timer interrupt intervals are configured with the statement:

configure timer n for m (s|ms|us)

This configures timer n to interrupt every m seconds, milliseconds, or microseconds.

Note that the minimum timer resolution is the clock tick, which is 0.25 milliseconds.

The timer interrupt can then be enabled, and the statement(s) to execute when it is delivered

specified, with the statement:

on timer n statement

If statement is a "gosubsubname ...", then all of the statements in the corresponding sub are

executed when the timer interrupt is delivered; otherwise, just the single statement is executed.

The timer interrupt can later be completely ignored (i.e., discarded) with the statement:

off timer n

The timer interrupt can be temporarily masked (i.e., held off but not discarded) with the state-

ment:

mask timer n

And can later be unmasked (i.e., any pending interrupts delivered) with the statement:

unmask timer n

Examples
> 10 dim ticks

> 20 configure timer 0 for 1000 ms

> 30 on timer 0 do print "slow"

> 40 configure timer 1 for 200 ms

> 50 on timer 1 do gosub fast

> 60 sleep 3 s

> 70 print "ticks is", ticks

> 80 end

57

DI-159 PLC Hardware Manual StickOS

> 90 sub fast

> 100 let ticks = ticks+1

> 110 endsub

> run

slow

slow

slow

ticks is 14

> _

58

StickOS DI-159 PLC Hardware Manual

Digital I/O

Digital I/O pins are designated in the DI-159 just as the label on the device states. For example,

digital input channel 0 is Di0. The example Boilerplate code provided shows all pin des-

ignations in the DI-159 PLC. Use the following for quick reference to pinnames:

Di0 = digital input channel 0

Di1 = digital input channel 1

Di2 = digital input channel 2

Di3 = digital input channel 3

Do0 = digital output channel 0

Do1 = digital output channel 1

Do2 = digital output channel 2

Do3 = digital output channel 3

Led0 = digital output channel Led0

Led1 = digital output channel Led1

Pb = digital input channel for the pushbutton

Digital input 0 is configured and the variable i0 is bound to the Di0 pin with the following state-

ment: dim i0 as pin Di0 for digital input.

Device Leds (Led0 and Led1) work as digital outputs while the pushbutton works as a digital

input designated as Pb.

A pin is configured for digital I/O, and a variable bound to that pin, with the following state-

ment:

dim varpin as pin pinname for digital (input|output)

If a pin is configured for digital input, then subsequently reading the variable varpin will return

the value 0 if the digital input pin is currently at a low level, or 1 if the digital input pin is cur-

rently at a high level. It is illegal to attempt write the variable varpin (i.e., it is read-only).

59

DI-159 PLC Hardware Manual StickOS

If a pin is configured for digital output, then writing varpin with a 0 value will set the digital

output pin to a low level, and writing it with a non-0 value will set the digital output pin to a

high level. Reading the variable varpin will return the value 0 if the digital output pin is cur-

rently at a low level, or 1 if the digital output pin is currently at a high level.

Examples

As a simple example, the following BASIC program generates a 1 Hz square wave on the

"dtin0" pin:

> 10 dim square as pin dtin0 for digital output

> 20 while 1 do

> 30 let square = !square

> 40 sleep 500 ms

> 50 endwhile

> run

<Ctrl-C>

STOP at line 40!

> _

Press <Ctrl-C> to stop the program.

Line 10 configures the "dtin0" pin for digital output, and creates a variable named "square"

whose updates are reflected at that pin. Line 20 starts an infinite loop (typically DI-159 PLC

programs run forever). Line 30 inverts the state of the dtin0 pin from its previous state -- note

that you can examine as well as manipulate the (digital or analog or servo or frequency) output

pins. Line 40 just delays the program execution for one half second. And finally line 50 ends

the infinite loop.

If we want to run the program in a slightly more demonstrative way, we can use the "trace on"

command to show every executed line and variable modification as it occurs:

> trace on

> run

10 dim square as pin dtin0 for digital output

20 while 1 do

30 let square = !square

let square = 0

40 sleep 500 ms

50 endwhile

20 while 1 do

30 let square = !square

let square = 1

40 sleep 500 ms

50 endwhile

60

StickOS DI-159 PLC Hardware Manual

20 while 1 do

30 let square = !square

let square = 0

40 sleep 500 ms

<Ctrl-C>

STOP at line 40!

> trace off

> _

Again, press <Ctrl-C> to stop the program.

Note that almost all statements that can be run in a program can also be run in "immediate"

mode, at the command prompt. For example, after having run the above program, the "square"

variable (and dtin0 pin) remain configured, so you can type:

> print "square is now", square

square is now 0

> let square = !square

> print "square is now", square

square is now 1

> _

This also demonstrates how you can examine or manipulate variables (or pins!) at the com-

mand prompt during program debug.

61

DI-159 PLC Hardware Manual StickOS

Analog Input

Analog Input pins are designated in the DI-159 just as the label on the device states. For exam-

ple, analog input channel 0 is Ch0.

Please note: The DI-159 hardware does not support analog output.

The example Boilerplate code provided shows all pin designations in the DI-159 PLC. Use the

following for quick reference to pinnames:

Ch0 = analog input channel 0

Ch1 = analog input channel 1

Ch2 = analog input channel 2

Ch3 = analog input channel 3

Ch4 = analog input channel 4

Ch5 = analog input channel 5

Ch6 = analog input channel 6

Ch7 = analog input channel 7

Channel 0 is configured for analog input and the variable c0 is bound to the Ch0 pin with the

following statement: dim c0 as pin Ch0 for analog input.

A pin is configured for analog input, and a variable bound to that pin, with the following state-

ment:

dim varpin as pin pinname for analog input

If a pin is configured for analog input, then subsequently reading the variable varpin will return

the analog voltage level, in millivolts (mV). It is illegal to attempt write the variable varpin (i.e.,

it is read-only).

If a pin is configured for analog output, then writing varpin with a millivolt value will set the

analog output (PWM actually) pin to a corresponding analog voltage level. Reading the var-

iable varpin will return the analog voltage level, in millivolts (mV). Please note: The DI-159

hardware does not support analog output.

The maximum analog supply voltage millivolts may be displayed with the command:

62

StickOS DI-159 PLC Hardware Manual

analog

Configure the maximum analog supply voltage millivolts with the following command:

analog millivolts

This value defaults to 3300 mV and is stored in flash and affects all analog I/O pins.

Example

The DI-159 PLC can perform analog input as simply as digital I/O.

The following BASIC program takes a single measurement of an analog input at pin "an0" and

displays it:

> new

> 10 dim potentiometer as pin an0 for analog input

> 20 print "potentiometer is", potentiometer

> run

potentiometer is 2026

> _

Note that analog inputs and outputs are represented by integers in units of millivolts (mV).

Note that almost all statements that can be run in a program can also be run in "immediate"

mode, at the command prompt. For example, after having run the above program, the "poten-

tiometer" variable (and an0 pin) remain configured, so you can type:

> print "potentiometer is now", potentiometer

potentiometer is now 2027

> _

This also demonstrates how you can examine variables (or pins!) at the command prompt dur-

ing program debug.

63

DI-159 PLC Hardware Manual StickOS

Frequency Output

Digital Output pins (Do0 to Do3) may be used as Frequency Outputs.

A pin is configured for frequency output, and a variable bound to that pin, with the following

statement:

dim varpin as pin pinname for frequency output

If a pin is configured for frequency output, then writing varpin with a hertz (Hz) value will set

the frequency output pin to the specified frequency. Reading the variable varpin will return the

output frequency, in hertz (Hz).

Example

The DI-159 PLC can perform frequency output as simply as digital I/O or analog input.

The following BASIC program generates a 1kHz square wave on a frequency output pin

“dtin0” for 1 second:

> new

> 10 dim audio as pin dtin0 for frequency output

> 20 let audio = 1000

> 30 sleep 1 s

> 40 let audio = 0

> run

> _

Note that frequency outputs are represented by integers in units of hertz (Hz).

Note that almost all statements that can be run in a program can also be run in “immediate”

mode, at the command prompt. For example, after having run the above program, the “audio”

variable (and dtin0 pin) remain configured, so you can type:

> print "audio is now", audio

audio is now 0

> let audio = 2000

> print "audio is now", audio

audio is now 2000

> _

This also demonstrates how you can examine or manipulate variables (or pins!) at the com-

mand prompt during program debug.

64

StickOS DI-159 PLC Hardware Manual

Other Statements

You can delay program execution for a number of seconds, milliseconds, or microseconds

using the statement:

sleep expression (s|ms|us)

Note that the minimum sleep resolution is the clock tick, which is 0.25 milliseconds. Note also

that in general it would be a bad idea to use a sleep statement in the on handler for a timer.

You can add remarks to the program, which have no impact on program execution, with the

statement:

rem remark

Examples
> 10 rem this program takes 5 seconds to run

> 20 sleep 5 s

> run

> _

65

DATAQ Instruments Terminal Emulator

DATAQ Instruments terminal emulator is provided free of charge for use with any DI-159

PLC device. Any terminal software that can hook a com port can be used with the DI-159 -

The DATAQ Instruments Terminal is not required for use with the DI-159 PLC. USB drivers

can be installed separately (see Windows Driver Installation instructions). Drivers and Software

may be downloaded from the DATAQ Instruments web site at http://www.dataq.com/159.

Please Note: Internet Access is REQUIRED for installation of the Terminal Software.

Installation

1. Go to http://www.dataq.com/159 in your web browser.

2. Click on the DI-159 PLC Terminal Emulator download link and download the

setup.exe file. The following prerequisites are required: Windows Installer 4.5 and Micro-

soft .NET Framework 4 (x86 and x64). If prerequisites are not installed, the installation

program may automatically download them from the MS web site.

3. Open or run setup.exe when download is complete.

4. Once complete, the Main Window will display.

Main Window

Once the device drivers and the DATAQ Terminal program are downloaded and installed,

plug the DI-159 PLC device into your computer's USB port and locate the program menu item

at Start > Programs > DATAQ Instruments > DATAQ PLC Terminal to run the program.

66

http://www.dataq.com/159
http://www.dataq.com/159

DI-159 PLC Hardware Manual DATAQ Instruments Terminal

Menu Items
File Menu

Load Text File. Opens the Windows Open File dialog box. Allows you to open a BASIC pro-

gram saved to a text file.

Save As (Ctrl + S). Opens the Windows Save File dialog box. Allows you to save the cur-

rently loaded program to a text file on your computer.

Exit. Exits the program.

DI-159 Menu

Run (F5). Runs the currently loaded program and opens the Output Display. See Output Dis-

play below.

Stop (Ctrl + C). Stops the currently loaded program.

Open Output Window. Opens the Output Display window.

67

DATAQ Instruments Terminal DI-159 PLC Hardware Manual

Help Menu

View Help (Ctrl + F1). Opens the help file.

Sample PLC Code. DATAQ Instruments provides several sample BASIC programs to help

get you started. Clicking on any of the menu items will immediately load the chosen program

into the DI-159, overwriting what is currently there. See Sample Programs for more infor-

mation.

About DATAQ Terminal. Provides the Version number of the software and copyright infor-

mation.

Icons

Load
Opens the Windows File Selection dialog box allowing you to load a

BASIC program saved as a text file.

Save Program

to Text File

Opens the Windows File Save dialog box allowing you to save the cur-

rently loaded program to a text file.

Run Runs the currently loaded program.

Stop Stops the program.

Clear Window
Clears the DATAQ Terminal Screen and places the command prompt at

the top.

Editor
Opens the BASIC program editor allowing you to make changes to the

currently loaded program (See Editor below).

Output Display

68

DI-159 PLC Hardware Manual DATAQ Instruments Terminal

Once open, the device immediately begins to stream data and print it out in the Output Display

window (as long as a print statement is specified in your program). Each row represents a sam-

ple taken and outputs the data as specified in your program. The Output Display window can

hold about 1000 rows.

The Output Display provides 4 program icons.

View in Excel

Enabled after you are streaming data to a csv file. Click this

button to open Microsoft Excel and view data recorded to

that point.

Stream to CSV File
Provides data recording capability in csv format. Saves data

as a text file.

Pause
Pauses the output display window so you can scroll to view

the output. Continues when you click on it again to resume.

Clear Window
Clears the Output Display Window and begins printing from

the top.

Editor

69

DATAQ Instruments Terminal DI-159 PLC Hardware Manual

The Editor window allows you to easily edit the program currently loaded into memory. If

there is no program loaded into the DI-159, this window would be blank allowing you to

create a program from scratch. Programing errors will not be identified until the code is saved

into memory. It is recommended to load example one (in Help > Sample PLC Code > Ex. 1

Boilerplate code) before creating a program from scratch.

There are 3 program icons in the Editor window.

Import changes to 159
Saves the current program into DI-159 memory (making it

the currently loaded program).

Save to TXT file Saves the program to a text file.

Exit editor
Closes the editor window without saving changes to the

currently loaded program.

70

Sample Programs

Aside from actually applying a DI-159 PLC in your control application, the best way to under-

stand how easy the instrument is to use is by example. The following just scratches the surface,

but should give you a solid understanding of the range of DI-159 PLC control possibilities.

Note that explanatory comments appear in these examples on the same line as the code to con-

serve space. Since the BASIC engine supports comments using the familiar REM statement,

comments would actually appear as program lines.

Example #1 Boilerplate Code
Object

Boilerplate code that must be included at the beginning of every program that uses the specified

I/O points. *

Code
10 dim c0 as pin Ch0 for analog input

20 dim c1 as pin Ch1 for analog input

30 dim c2 as pin Ch2 for analog input

40 dim c3 as pin Ch3 for analog input

50 dim c4 as pin Ch4 for analog input

60 dim c5 as pin Ch5 for analog input

70 dim c6 as pin Ch6 for analog input

80 dim c7 as pin Ch7 for analog input

90 dim i0 as pin Di0 for digital input

100 dim i1 as pin Di1 for digital input

110 dim i2 as pin Di2 for digital input

120 dim i3 as pin Di3 for digital input

130 dim o0 as pin Do0 for digital output

140 dim o1 as pin Do1 for digital output

150 dim o2 as pin Do2 for digital output

160 dim o3 as pin Do3 for digital output

170 dim push_button as pin Pb for digital input

180 dim led0 as pin Led0 for digital output

190 dim led1 as pin Led1 for digital output

200 rem your program starts here

'map analog input 0 to BASIC variable "c0"

'map analog input 1 to BASIC variable "c1"

'map analog input 2 to BASIC variable "c2"

'map analog input 3 to BASIC variable "c3"

'map analog input 4 to BASIC variable "c4"

'map analog input 5 to BASIC variable "c5"

'map analog input 6 to BASIC variable "c6"

'map analog input 7 to BASIC variable "c7"

'map digital input 0 to BASIC variable "i0"

'map digital input 1 to BASIC variable "i1"

'map digital input 2 to BASIC variable "i2"

'map digital input 3 to BASIC variable "i3"

'map digital output 0 to BASIC variable "o0"

'map digital output 1 to BASIC variable "o1"

'map digital output 2 to BASIC variable "o2"

'map digital output 3 to BASIC variable "o3"

'map pushbutton to BASIC variable "push_button"

'map LED0 to BASIC variable "led0"

'map LED1 to BASIC variable "led1"

'

Comment

These instructions map the various DI-159 PLC analog input and digital I/0 points so the

BASIC program can use them. You can rename them as necessary (e.g. change "c0" to "Motor-

Voltage"), and you can even omit those that will not be used by your program. In this example

all I/O points have been mapped to the variable names that immediately follow the "dim" state-

ment.

* Note that for clarity this code will not be shown in all other examples, so all subsequent pro-

gramming examples begin with line 200.

71

DI-159 PLC Hardware Manual Sample Programs

Example #2 General-purpose LED
Object

Flash general-purpose LED0 at a precise one second on/off interval.

Code
200 let led0 = 0

210 configure timer 0 for 1 s

220 on timer 0 do gosub flasher

230 while 1 do

240 endwhile

250 sub flasher

260 let led0 = !led0

270 endsub

'start with LED on

'configure one of four timers for 1 sec interval

'execute subroutine "flasher" when timer fires

'do nothing while waiting for the timer to fire

'

'end up here when timer fires

'invert the state of LED0 (turn off if on, and on if off)

'return to waiting for the timer to fire again

Comment

This example demonstrates the real time power of the BASIC program, the ease with which it

can manipulate peripherals, and one of many block statements (gosub, in this case). A single

statement configures a timer for a precise interval, and another single statement defines the state

of the peripheral (Led0 in this case.) Timer intervals can be configured in seconds (s), mil-

liseconds (ms), or microseconds (us) and can range from milliseconds to hours.

Example #3 Flash Both LEDs
Object

Flash both LEDs at precisely different rates, LED1 at four times the rate of LED0.

Code
200 let led0 = 0

210 let led1 = 0

220 configure timer 0 for 1000 ms

230 configure timer 1 for 250 ms

240 on timer 0 do gosub flash_led0

250 on timer 1 do gosub flash_led1

260 while 1 do

270 endwhile

280 sub flash_led0

290 let led0 = !led0

300 endsub

310 sub flash_led1

320 let led1 = !led1

330 endsub

'begin with both LEDs on

'

'configure first of four timers for 1 sec interval

'configure second of four timers for 1/4 sec interval

'execute subroutine "flash_led0" when timer0 fires

'execute subroutine "flash_led1" when timer1 fires

'do nothing while waiting for the timers to fire

'

'end up here when timer0 fires

'invert the state of LED0 (turn off if on, and on if off)

'return to waiting for timers to fire again

'end up here when timer1 fires

'invert the state of LED1 (turn off if on, and on if off)

'return to waiting for timers to fire again

72

Sample Programs DI-159 PLC Hardware Manual

Comment

Extends the example above to include two timers, each running at a precise, independent, and

different rate. Each timer indirectly controls the state of a peripheral, in this case the two gen-

eral-purpose LEDs.

Example #4 Flash Both LEDs and Digital Outs
Object

Flash both LEDs at precisely different rates, LED1 at four times the rate of LED0, and control

digital outputs DO0 and DO1 in the same way.

Code
200 let led0 = 0

210 let led1 = 0

220 let o0 = 1

230 let o1 = 1

240 configure timer 0 for 1000 ms

250 configure timer 1 for 250 ms

260 on timer 0 do gosub flash_led0

270 on timer 1 do gosub flash_led1

280 while 1 do

290 endwhile

300 sub flash_led0

310 let led0 = !led0

320 let o0 = !o0

330 endsub

340 sub flash_led1

350 let led1 = !led1

360 let o1 = !o1

370 endsub

'begin with both LEDs on

'

'begin with both digital outputs on

'

'configure first of four timers for 1 sec interval

'configure second of four timers for 1/4 sec interval

'execute subroutine "flash_led0" when timer0 fires

'execute subroutine "flash_led1" when timer1 fires

'do nothing while waiting for the timers to fire

'

'end up here when timer0 fires

'invert the state of LED0 (turn off if on, and on if off)

'invert the state of digital out 0 (turn off if on, on if off)

'return to waiting for timers to fire again

'end up here when timer1 fires

'invert the state of LED1 (turn off if on, and on if off)

'invert the state of digital out 1 (turn off if on, on if off)

'return to waiting for timers to fire again

Comment

Extends the example above to include two timers, each running at a precise, independent, and

different rate. Each timer indirectly controls the state of a peripheral, in this case the two gen-

eral-purpose LEDs.

Example #5 BASIC's Bitwise Expression
Object

Use BASIC’s bitwise expressions to change the state of the LEDs in binary-count order from

00 (off, off) to 11 (on, on) each time the general-purpose pushbutton is pressed. Also intro-

duces BASIC’s FOR/NEXT block statement.

73

DI-159 PLC Hardware Manual Sample Programs

Code
200 dim count, i as byte

210 let count = 3

220 let led0 = 1

230 let led1 = 1

240 while 1 do

250 while push_button do

260 endwhile

270 gosub debounce

280 let count = count-1

290 let led0 = count&1

300 let led1 = count>>1&1

310 while !push_button do

320 gosub debounce

330 endwhile

340 endwhile

350 sub debounce

360 for i = 1 to 200

370 next

380 endsub

'define variables COUNT and I as byte (0-255)

'set two LSBs of COUNT to 1

'set initial LED states to match initial COUNT value (both LEDs off)

'

'loop continuously

'wait for pushbutton to be pressed (low true)

'

'de-bounce the pushbutton to get one clean transition

'the LEDs are low true, so we’ll decrement COUNT

'LED0 is LSB, so mask COUNT LSB state by ANDing with 1

'LED1 is second LSB, so right-shift COUNT one bit, then AND with 1

'wait for the pushbutton to be released

'de-bounce pushbutton again to get a clean transition

'end one pushbutton cycle

'do it again

'pushbutton de-bounce subroutine.

'do nothing for 200 cycles while the pushbutton settles down

'

'return from the subroutine

Comment

Note that the pushbutton and LEDs are low true. A 0 written to either LED lights it, and the

pushbutton transitions from 1 to 0 when pressed.

Example #6 Create a Square Wave
Object

Create a square wave output with a frequency that’s proportional to the magnitude of the volt-

age applied to an analog input channel.

Code
200 dim o0 as pin Do0 for frequency output

210 dim New_o0

220 let o0 = 100230 configure timer 0 for 100 ms

240 on timer 0 do gosub Update

250 while 1 do

260 endwhile

270 sub Update

280 let New_o0 = c0/100+100

290 if o0!=New_o0 then

300 let o0 = New_o0

310 endif

330 endsub

're-dimension do0 to be a frequency output

'define variable New_o0

'set square wave frequency output at o0 to100Hz

'set timer to update 10 times per second

'go to subroutine Update whenever timer 0 fires

'loop while waiting for the timer to fire

'

'get here when the timer fires

'calculate new frequency where c0=analog input0

'don’t write the value if it hasn't changed

'New_o0 is different so change frequency

'

Comment

Note that the pushbutton and LEDs are low true. A 0 written to either LED lights it, and the

pushbutton transitions from 1 to 0 when pressed. Any DI-159 PLC digital output port may be

74

Sample Programs DI-159 PLC Hardware Manual

programmed to output a precise frequency using the method shown here. Frequency can range

from 0 to several kHz in 1 Hz steps. Analog input values are in millivolts and range from ±10,

000. The calculation in line 280 above yields a frequency scaled between DC and 200 Hz for a

–full scale to +full scale range respectively.

Example #7 Channel Output
Object

Print variables in this order: sample counter, all eight analog channels, and the state of the dig-

ital inputs and outputs. Pressing the general-purpose pushbutton resets the sample counter, and

the digital output states reflect the value of the sample counter. Finally, LED0 and LED1 dis-

play the state of the two LSBs of the sample rate counter.

Code
200 dim cr

210 configure timer 0 for 1 s

220 on timer 0 do gosub readin

230 on push_button==0 do cr = 0

240 while 1 do

250 endwhile

260 sub readin

270 cr = cr+1

280 let o0 = cr&1

290 let o1 = cr&2

300 let o2 = cr&4

310 let o3 = cr&8

320 print cr, c0, c1, c2, c3, c4, c5,

c6, c7, i0, i1, i2, i3, o0, o1, o2, o3

330 led0 = o0

340 led1 = o1

350 endsub

'dimension cr, which will be used as a counter

'set up a timer for a sample rate of 1 Hz

'go to subroutine 'readin’ when the timer fires

'reset the sample counter if the pushbutton is pressed

'do nothing while waiting for the 1 Hz timer to fire

'

'arrive here when the timer fires

'increment the sample rate counter

'assign dig out 0 to the LSB of the sample counter

'assign dig out 1 to bit 1 of the sample counter

'assign dig out 2 to bit 2 of the sample counter

'assign dig out 3 to the MSB of the sample counter

'stream sample counter, all analog input values, and

'state of the digital inputs and outputs

'assign the state of dig out 0 to LED0

'assign the state of dig out 1 to LED1

'return

Comment

This example, when used with the provided DATAQ Terminal program for Windows, allows

recorded values to be streamed to a CSV file via the PRINT statement, which is easily

imported to Microsoft Excel.

75

DI-159 Block Diagram

76

Dimensional Drawing

77

Support

Please visit the DI-159 product page for support issues and documentation at

http://www.dataq.com/plc-data-acquisition/di-159-plc.html.

If you cannot find an answer to your question there please fill out a support ticket at

http://www.dataq.com/ticket.

78

http://www.dataq.com/plc-data-acquisition/di-159-plc.html
http://www.dataq.com/plc-data-acquisition/di-159-plc.html
http://www.dataq.com/plc-data-acquisition/di-159-plc.html
http://www.dataq.com/plc-data-acquisition/di-159-plc.html
http://www.dataq.com/plc-data-acquisition/di-159-plc.html
http://www.dataq.com/ticket

DATAQ Instruments, Inc.
241 Springside Drive
Akron, Ohio 44333

Telephone: 330-668-1444
Fax: 330-666-5434

Submit a support ticket to: www.dataq.com/ticket

Direct Product Links
(click on text to jump to page)

Data Acquisition | Data Logger | Chart Recorder

http://www.dataq.com/
http://www.dataq.com/
http://www.dataq.com/
http://www.dataq.com/data-logger/data-logger.html
http://www.dataq.com/data-logger/data-logger.html
http://www.dataq.com/data-logger/data-logger.html
http://www.dataq.com/chart-recorder/chart-recorder.html
http://www.dataq.com/chart-recorder/chart-recorder.html

	Warranty and Service Policy
	Product Warranty
	Service Policy

	Introduction
	Features
	Analog Inputs
	Digital Inputs
	Digital Outputs
	Software
	StickOS(TM)
	DATAQ PLC Terminal
	Other Drivers and Terminals (Linux)

	Specifications
	Analog Inputs
	Digital Inputs
	ADC Characteristics
	Digital Outputs
	Power
	Indicators and Connections
	Environmental
	Physical Characteristics
	Software Support

	Installation
	Installing Windows Drivers
	Connecting the Instrument to Your Computer

	Controls, Indicators, and Connections
	Mini-B USB Connection
	Connecting Input Signals
	DI-159 Signal Connections
	Connect Analog Input Channel 0
	Connecting Signal Leads
	Digital Inputs
	Digital Outputs

	LED Indicators
	Push Button

	StickOS
	StickOS Commands
	BASIC Program Statements

	StickOS Quick Reference
	Commands
	Device Statements
	Expressions
	Strings
	General Statements
	Modes
	Block Statements
	Variables

	Command Lines
	StickOS Commands
	Help Command
	Examples

	Entering Programs
	Examples

	Running Programs
	Examples

	Loading and Storing Programs
	Examples

	Debugging Programs
	Examples

	Other Commands
	Examples

	Basic Program Statements
	Variable Declarations
	Simple RAM variables
	Array RAM variables
	String RAM variables
	DI-159 PLC register variables
	Persistent integer (32 bits) flash variables
	Pin variables
	Examples

	System Variables
	Examples

	Variable Assignments
	Examples

	Expressions
	Examples

	Strings
	Examples

	Print Statements
	Examples

	Variable Print Statements
	Examples

	Input Statements
	Examples

	Read/Data Statements
	Examples

	Conditional Statements
	Examples

	Looping Conditional Statements
	Examples

	Subroutines
	Examples

	Timers
	Examples

	Digital I/O
	Examples

	Analog Input
	Example

	Frequency Output
	Example

	Other Statements
	Examples

	DATAQ Instruments Terminal Emulator
	Installation
	Main Window
	Menu Items
	File Menu
	DI-159 Menu
	Help Menu

	Icons
	Output Display
	Editor

	Sample Programs
	Example #1 Boilerplate Code
	Object
	Code
	Comment

	Example #2 General-purpose LED
	Object
	Code
	Comment

	Example #3 Flash Both LEDs
	Object
	Code
	Comment

	Example #4 Flash Both LEDs and Digital Outs
	Object
	Code
	Comment

	Example #5 BASIC's Bitwise Expression
	Object
	Code
	Comment

	Example #6 Create a Square Wave
	Object
	Code
	Comment

	Example #7 Channel Output
	Object
	Code
	Comment

	DI-159 Block Diagram
	Dimensional Drawing
	Support

