

OXYGEN R3.7

SOFTWARE FEATURE MANUAL

WELCOME TO THE WORLD OF DEWETRON!

Congratulations on your new device! It will supply you with accurate, complete and reproducible measurement results for your decision making.

Look forward to the easy handling and the flexible and modular use of your DEWETRON product and draw upon more than 25 years of DEWETRON expertise in measurement engineering.

THE MEASURABLE DIFFERENCE.

The information contained in this document is subject to change without notice.

DEWETRON GmbH (DEWETRON) shall not be liable for any errors contained in this document. DEWETRON MAKES NO WARRANTIES OF ANY KIND ABOUT THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED. DEWETRON SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

DEWETRON shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory, in connection with the furnishing of this document or the use of the information in this document.

Technical Support

Please contact your local authorized DEWETRON representative first for any support and service questions.

For Asia and Europe, please contact:

DEWETRON GmbH Parkring 4 8074 Grambach AUSTRIA

 Tel.:
 +43 316 3070

 Fax:
 +43 316 307090

 Email:
 support@dewetron.com

 Web:
 http://www.dewetron.com

The telephone hotline is available Monday to Friday between 08:00 and 17:00 CET (GMT +1:00)

Restricted Rights Legend:

Use Austrian law for duplication or disclosure.

DEWETRON GmbH Parkring 4 8074 Grambach AUSTRIA

Printing History:

Please refer to the page bottom for printing version. Copyright © DEWETRON GmbH

This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

All trademarks and registered trademarks are acknowledged to be the property of their owners.

Before updating your software please contact DEWETRON. Use only original software from DEWETRON.

Please find further information at <u>www.dewetron.com</u>.

For America, please contact:

DEWETRON, Inc. 2850 South County Trail, Unit 1 East Greenwich, RI 02818 U.S.A.

Tel.: +1 401 284 3750	
Toll-free: +1 877 431 5166	
Fax: +1 401 284 3755	
Email: support@dewamerica.com	
Web: http://www.dewamerica.co	m

The telephone hotline is available Monday to Friday between 08:00 and 17:00 GST (GMT -5:00)

Table of Content

INSTA	LLING OXYGEN	9
SOFT	WARE OVERVIEW	13
2.1 2.2 2.3 2.4 2.5 2.6	Software modes Saving a Measurement Setup File Loading a Measurement Setup File Reviewing a Data File (<i>PLAY</i> mode) Overview bar Custom Ordering of Menu Locations	15 15 16 17 19 19
USING	G DEWETRON MEASUREMENT HARDWARE WITH OXYGEN	20
3.1 3.2.1 3.2.2 3.2.3 3.2.4 3.3 3.3.1 3.3.2 MEASU 3.3.3	USING TRION [™] Hardware with OXYGEN Using a TRIONET [™] IN OXYGEN Using EPAD2s with OXYGEN on a DEWE or DEWE2 System USING EPAD2s with OXYGEN via EPAD2-USB Module TROUBLESHOOTING EPAD -CHANNEL LIST USING DAQP/HSI MODULES WITH OXYGEN CONNECTING DAQP/HSI MODULES VIA AN ORION CARD TO THE MEASUREMENT SYSTEM CONNECTING DAQP/HSI MODULES VIA A TRION [™] -1802/1600-DLV CARD TO THE JREMENT SYSTEM PROGRAMMING THE MODULES ADDRESSES	20 21 22 22 24 25 25 26 26 27 28
SYSTE	M SETTINGS	30
4.1 4.1.1 4.1.2 4.2	MEASUREMENT SETUP GENERAL SETTINGS MULTI-FILE RECORDING 1.2.1 Recording a Multi-File 4.1.2.1.1 Split by duration 4.1.2.1.2 Split by number of recording events 1.2.2 Loading a Multi-File	30 31 32 32 32 33 34
4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.4 4.4 4.4 4.5	GLOBAL HEADER DATA ADVANCED SETUP SYNC SETUP - SYNCHRONIZATION OPTIONS USING OXYGEN WITH TRION [™] HARDWARE INTERNAL TIMING SOURCE TRION-SYNC-BUS APPLYING AN EXTERNAL SYNCHRONIZATION SIGNAL TO THE DEWE2/3 SYSTEM 4.3.1 Synchronization Possibilities with a TRION [™] -BASE Board 4.3.2 Synchronization Possibilities with a TRION [™] -TIMING/VGPS Board GENERAL REMARKS ON PPS AND IRIG SYNCHRONIZATION DAO HARDWARE	36 38 39 39 40 40 41 44 45
	INSTA SOFT 2.1 2.2 2.3 2.4 2.5 2.6 USING 3.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.2 3.2.3 3.2.4 3.3 3.3.1 3.3.2 4.3 4.1 4.1.1 4.1.2 4.1 4.1.1 4.1.2 4.1 4.1.1 4.1.2 4.1 4.1.1 4.1.2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	INSTALLING OXYGEN SOFTWARE OVERVIEW 2.1 SOFTWARE MODES 2.2 SAVING A MEASUREMENT SETUP FILE 2.3 LOADING A MEASUREMENT SETUP FILE 2.4 REVIEWING A DATA FILE (<i>PLAY</i> MODE) 2.5 OVERVIEW BAR 2.6 CUSTOM ORDERING OF MENU LOCATIONS USING DEWETRON MEASUREMENT HARDWARE WITH OXYGEN 3.1 USING TRION™ HARDWARE WITH OXYGEN 3.2.1 USING FADOS WITH OXYGEN ON A DEWE OR DEWE2 SYSTEM 3.2.2 USING EPAD2S WITH OXYGEN ON A DEWE OR DEWE2 SYSTEM 3.2.3 TROUBLEBHOOTING 3.2.4 EPADS WITH OXYGEN ON A DEWE OR DEWE2 SYSTEM 3.2.3 TROUBLEBHOOTING 3.2.4 EPAD CHANNEL LIT 3.3 USING DAOP/HSI MODULES WITH OXYGEN 3.3.1 CONNECTING DAQP/HSI MODULES VIA AN ORION CARD TO THE MEASUREMENT SYSTEM 3.3.2 CONNECTING DAQP/HSI MODULES VIA AN ORION CARD TO THE MEASUREMENT SYSTEM 3.3.3 PROGRAMMING THE MODULES ADDRESSES SYSTEM SETTINGS 4.1.1 4.1.1 GENERAL SETTINGS 4.1.2 MULTI-FILE 4.1.2 Split by duration 4.1.2 Sp

	4.6	Senso	R DATABASE	. 46
	4.7	Remo	TE CONTROL	. 49
	4.7.1	SC	PI OVER ETHERNET	. 49
	4.7.2	XC	P over Ethernet	. 49
	4.7.3	Us	AGE SCPI AND XCP SIMULTANEOUSLY	. 50
	4.7.4	Re	MOTE CONTROL INDICATOR	. 50
	4.8	STREAM	MING INTERFACES	. 51
	4.8.1	ET	HERCAT SLAVE	. 51
	4.8.2	Da	ita Stream Plugin	. 51
	4.9	Remo	te Control and Data Transfer Interfaces – Summary	. 52
	4.10	UIOP	TIONS	. 52
	4.11	LOCAL	IZATION	. 53
	4.12	Shutd	00WN	. 53
5	DATA	CHAN	NELS MENU	. 54
	51			54
	5.2	Снамс	SING THE CHANNEL SETTINGS	56
	5.2		IANG THE CHANNEL SETTINGS IN THE DATA CHANNEL MENU	56
	5.2.1	211	Table Scaling	59
	522	сн. Сн	ianging the Channel Settings in the Channel Setup	61
	5.3	CREAT	ION OF MATHEMATICAL CHANNELS	61
	5.3.1	CR	FATION OF A FORMULA CHANNEL	. 62
	5.3.2	DF	scription of the Mathematical and Logical Functions	. 64
	5.3	3.2.1	Description of the edge-Count function (ecnt)	.67
	5.3	3.2.2	Description of the hold-function (hold)	. 69
	5.3	3.2.3	Description of the stopwatch-function (stopwatch)	.71
	5.3	3.2.4	Description of the measdiff-function (measdiff)	.72
	5.3	3.2.5	Description of the period-function (period)	.73
	5.3	3.2.6	Description of the dutycycle-function (dutycylce)	.74
	5.3	3.2.7	Description of the edge-function (Edge)	.76
	5.3	3.2.8	Combination of edge function and other formulas	.76
	5.3	3.2.9	Description of the rolling-overall-functions	.77
	5.3.3	Cr	EATION OF A STATISTICS CHANNEL	. 78
	5.3.4	De	SCRIPTION OF THE SELECTABLE STATISTICAL PARAMETERS	. 79
	5.3.5	Cr	EATION OF A FILTER CHANNEL	. 81
	5.3.6	Cr	EATION OF FFT CHANNELS	. 84
	5.3	3.6.1	Channel Setup of the Complex spectrum channel	. 85
	5.3	3.6.2	Channel Setup of the Amplitude spectrum channel	.87
	5.3	3.6.3	Channel Setup of the Phase spectrum channel	. 88
	5.3.7	Cr	EATION OF (STRAIN GAUGE) ROSETTE CHANNELS	. 88
	5.3	3.7.1	Required Input Channels	.90
	5.3	3.7.2	Resulting Output Channels	.91
	5.3	3.7.3	Usage of the Plugin	.92
	5.3	3.7.4	Physical Basics	.92
	5.3	3./.5	Implemented Formulas	.93
		5.3.7.	5.1 Constants	.93
		5.3.7.	5.2 Angle Reference	.93
	5.3	3.7.6	Calculation of 45° and 90° Rosette	.93
	5.3	3././	Calculation of 60° and 120° Kosette	.94

	5.3	3.7.8 Calculations valid for all Rosette Types	94
	5.3.8	Psophometer	94
	5.3.9	Swept Sine Analysis	95
	5.3	3.9.1 Introduction	95
	5.3	3.9.2 Setting up a Swept Sine Analysis	95
	5.3	3.9.3 Setup Overview	96
	5.3	3.9.4 Swept Sine Analysis Output channels	96
	5.3	3.9.5 Calculation Remarks	97
	5.3.10	0 OFFLINE MATH	97
	5.4	CREATING POWER GROUPS IN OXYGEN	100
	5.5	OXYGEN ETHERNET RECEIVER PLUGIN	101
	5.6	COUNTER CHANNELS IN OXYGEN	102
	5.6.1	EXPLANATION OF THE DIFFERENT COUNTER MODES (EXTRACT FROM THE TRION ^{1M} MODULE	
	TECHN	vical Reference Manual)	102
	5.6	6.1.1 Event Counting	102
	5.6	6.1.2 Frequency Measurement	102
	5.6	6.1.3 Encoder	103
	5.6.2		106
	5.6.3	CHANNEL LIST OF COUNTER CHANNELS	107
	5.6.4	CHANNEL SETUP OF A COUNTER CHANNEL	108
	5.t	6.4.1 Channel Setup for a TRION TH -CNT Channel in <i>Event</i> mode	100
	5.0	6.4.2 Channel Setup for a TRION TH -UNT Channel in <i>Encoder</i> mode	109
	2.0.2 Decem	DIGITAL FILTER OF A COUNTER CHANNEL (EXTRACT FROM THE TRION MODULE TECHNICAL	110
	566	ENCE IVIANUALJ	112
	5.0.0	6.6.1 Mandatory channel settings for Tacho sensors	112
	5.6	6.6.2 Mandatory channel settings for CDM+Trigger sensors	113
	5.6	6.6.3 Mandatory channel settings for Encoder sensors	113
	5.7	CAN INPLIT CHANNELS	114
	571	I OADING THE DBC-FILE	114
	5.7.2	Selecting the CAN-Channel Timebase	115
	5.7.3	Transmitting Measurement Data via CAN	116
	5.8	GPS-CHANNELS.	118
	5.9	CURRENT MEASUREMENT USING TRION TM Modules	120
	5.10	SELECTING MULTIPLE CHANNELS	121
	5.11	Channel List Eiltering Options	122
	5.11.1	1 FILTERING BY THE ACTIVE COLUMN	122
	5.11.2	2 Filtering by the <i>Channel</i> Column	123
	5.11.3	- 3 Filtering by the <i>Mode</i> Column	123
6			124
0	INSTIN		124
	<i>.</i>		
	6.1	Adding an Instrument to the Measurement Screen and Channel Assignment	124
	6.2	ANALOG METER	126
	6.3	DIGITAL METER	127
	6.4	Recorder	128
	6.4.1	INSTRUMENT PROPERTIES	128
	6.4.2	ADDITIONAL PROPERTIES	129
	6.4	4.2.1 Quick selection X-Axis scaling	129
	6.4	4.2.2 Quick selection Y-Axis scaling	130

	6.4	.4.2.3 Activate Cursors	133
	6.4	.4.2.4 Quick expansion button	136
	6.4	.4.2.5 Pinch/Scroll zoom feature	136
	6.4.3	B DEJA VIEW™	137
	6.5	Chart Recorder	139
	6.6	Bar Meter	140
	6.7	INDICATOR	141
	6.8	TABLE INSTRUMENT	
	6.9	IMAGE INSTRUMENT	143
	6.10	Text Instrument	
	6.11	Scope	
	6.11.	.1 Instrument Properties	
	6.12	SPECTRUM ANALYZER	
	6.12.	.1 Assignment of Time Domain Channels	
	6.12.2	2 Assignment of Frequency Domain Channels	
	6.12.3	3 INSTRUMENT PROPERTIES FOR TIME DOMAIN CHANNELS	148
	6.	.12.3.1 Section Window	149
		6.12.3.1.1 Window Type	149
		6.12.3.1.2 Normalization	154
	6.	.12.3.2 Section Spectrum	154
	6.	.12.3.3 Section Periodogram	156
	6.	.12.3.4 Additional Instrument Properties	157
	6.12.4	.4 Markers	157
	6.12.	.5 Improve Line Resolution (Enable zero-padding)	157
	6.	.12.5.1 Theory of zero-padding	158
	6.	.12.5.2 Zero-padding – A practical example	158
	6.12.0	.6 Normalization of FFT Spectra	161
	6.12.	7 CALCULATION OF A PERIODOGRAM	
	6.13	Video Instrument	
	6.14	ХҮ-Рьот	170
	6.15	GPS PLOT	172
	6.16	GPS quality	
	6.17	Spectrogram	
	6.18	Power Group	
7	TRICO		170
'	TNO		
	/.1	ADDING A TRIGGER EVENT	1/9
	7.2	Adding an Event Condition	
	/.3	Adding an Event Action	
	7.3.1	Record Action	
	7.3.2	ALARM ACTION	
	7.3.3	MARKER ACTION	
	7.3.4	SNAPSHOT ACTION	
	7.4 7 F	ARMING THE I RIGGER	
	/.5	APPLICATION EXAMPLES	
	/.5.1	EVENT BASED WAVEFORM RECORDING TRIGGERED BY AN INPUT CHANNEL	
	7.	.5.1.1 Example 1	
	7.	.5.1.2 Example 2	
	7.5.2	I IME I RIGGERED DATA KECORDING	

	7.5.3	DATA QUERY USING THE SNAPSHOT ACTION	
7.6		EVENT BASED WAVEFORM RECORDING AND STATISTICS RECORDING	
	7.7	Automatic Measurement Start	
8	EVEN	T LIST	
9	EXPO	RT SETTINGS	
	9.1	Export Active Recorder Region or Between Cursors	
	9.2	EXPORT OPTIONS FOR A *.CSV-FILE	
9.3		EXPORT OPTIONS FOR A *.TXT-FILE	
	9.4	EXPORT OPTIONS FOR A *.DMD-FILE	
	9.5	EXPORT OPTIONS FOR A *.MDF4-FILE	
	9.6	EXPORT OPTIONS FOR A *.MAT-FILE	
	9.7	EXPORT OPTIONS FOR A *.EXCEL (XLSX)-FILE	
	9.8	AUTOMATIC DATA EXPORT AFTER MEASUREMENT END	
10			100
IC	IHE S	SCREENS MENU	
11	. THE F	REPORTING TOOL	201
	11.1	CREATING A REPORT	
	11.2	Reporting Cursor	
	11.3	MENU DESCRIPTION	
12	OXYG	EN NET	
	17.1	C	200
	12.1	SUPPORTED HARDWARE TOPOLOGIES	
	12.1.		
	12.1.	2 TIMING WITHOUT TRION SYNC RUS	
	12.1.		205
	12.1.		
	12.2	1 OXYGEN Net MENU - Nodes	211
	12.2.	2 OXYGEN Net Menu - Sync	211
	12.2	3 OXYGEN NET MENU - SETTINGS	
	12.3	SETTING UP AN OXYGEN NET SYSTEM	
	12.3.	1 Generic Setup	
	12.3.	2 Use with TRION-SYNC-BUS	
	12.3.	3 Use with TIMING-Modules only	
	12.4	SETUP GENERATION ON AN OXYGEN NET SYSTEM	
	12.5	RECORDING DATA WITH AN OXYGEN NET SYSTEM	
	12.6	Additional Information	
	12.7	TROUBLESHOOTING	
	12.8	LIMITATIONS OF OXYGEN NET WITHIN OXYGEN 3.7	
	B B B B B B B B B B		
13	PSOP	HUIVIETEK	

13.1	Introduction	۷	
13.2	Setup		
13.3	Usage		
13.4	CALCULATION		
13.5	WEIGHTING O	PTIONS	
13.5.	1 ITU-T 0.4	1	
13.5.	2 C-messag	Ε	
13.5.	3 Flat		
13.5.	4 Unweigh	TED	
13.5.	5 Comparis	on between Psophometric and C-message Weighting	
13.6	Links		
13.6.	1 ITU-T Rec	COMMENDATION 0.41 (10/94)	
14 CAN-	FD DAQ SUPP	ORT IN OXYGEN	
15 LIST (OF FIGURES		
16 LIST (OF TABLES		

1 INSTALLING OXYGEN

∎ То install OXYGEN your PC, launch the installer on measurement DEWETRON_Oxygen_Setup_Rx.x_x64.exe which can be found in the folder \files\software\Oxygen\Software of the Install Media USB stick which is delivered with the measurement system and follow the installation instructions:

Figure 1-2: Select Destination Location

Select Oxygen Edition Which edition of Oxygen should be instal Please select the Oxygen edition you wa continue. Oxygen Desktop	led? nt to install. Click	Next when you ar	
Please select the Oxygen edition you wa continue. Oxygen Desktop	nt to install. Click	<mark>N</mark> ext when you ar	e ready to
Oxygen Desktop			e ready to
			~
	< Back	Next >	Cancel
Figure 1-3: Sele	ect OXYGEN E	dition	
Setup - DEWETRON Oxygen			
Select Start Menu Folder Where should Setup place the program's	shortcuts?		J.
Setup will create the program's	shortcuts in the fo	llowing Start Menu	ı folder.
To continue, click Next. If you would like	to select a differen	nt folder, click Brow	wse.
DEWETRON		Bro	owse
	1 De de	Marchin	Const
Figure 1-4: Selec	< Back	Next >	Cancel
Figure 1-4: Selec	< Back	Next >	Cancel
Figure 1-4: Select Setup - DEWETRON Oxygen Ready to Install Setup is now ready to begin installing DEV	< Back Ct Start Menu WETRON Oxygen	Next >	Cancel
Figure 1-4: Select Setup - DEWETRON Oxygen Ready to Install Setup is now ready to begin installing DEN Click Install to continue with the installatio change any settings.	< Back Ct Start Menu WETRON Oxygen on, or click Back if	Next > Folder	Cancel
Figure 1-4: Select Setup - DEWETRON Oxygen Ready to Install Setup is now ready to begin installing DEN Click Install to continue with the installation change any settings. Destination location: C: Program Files \DEWETRON\Oxyge	< Back ct Start Menu WETRON Oxygen on, or click Back if en	Next > Folder	Cancel
Figure 1-4: Select Setup - DEWETRON Oxygen Ready to Install Setup is now ready to begin installing DED Click Install to continue with the installation change any settings. Destination location: C:\Program Files\DEWETRON\Oxyge Setup type: Oxygen Desktop	< Back ct Start Menu WETRON Oxygen on, or click Back if en	Next >	Cancel
Figure 1-4: Select Setup - DEWETRON Oxygen Ready to Install Setup is now ready to begin installing DEN Click Install to continue with the installation change any settings. Destination location: C:\Program Files\DEWETRON\Oxyge Setup type: Oxygen Desktop Selected components: Install Oxygen Application	< Back ct Start Menu WETRON Oxygen on, or click Back if en	Next >	Cancel
Figure 1-4: Select Setup - DEWETRON Oxygen Ready to Install Setup is now ready to begin installing DEN Click Install to continue with the installation change any settings. Destination location: C:\Program Files\DEWETRON\Oxyget Setup type: Oxygen Desktop Selected components: Install Oxygen Application Start Menu folder: DEWETRON	< Back	Next > Folder	Cancel
Figure 1-4: Select Setup - DEWETRON Oxygen Ready to Install Setup is now ready to begin installing DEI Click Install to continue with the installatio change any settings. Destination location: C:\Program Files\DEWETRON\Oxyge Setup type: Oxygen Desktop Selected components: Install Oxygen Application Start Menu folder: DEWETRON	< Back ct Start Menu METRON Oxygen on, or click Back if en	Next > Folder	Cancel

Figure 1-5: Ready to Install

Setup - DEWETRON Oxyg	en — □_>
Installing Please wait while Setup ir	nstalls DEWETRON Oxygen on your computer.
Extracting files C:\Program Files\DEWETI	RON \Oxygen \bin \ib \gstreamer-1.0 \ibgstmatroska.dll
	Cancel
	i Bare 1 of motalining
	en Completing the DEWETRON Oxygen Setup Wizard Setup has finished installing DEWETRON Oxygen on your computer. The application may be launched by selecting the installed icons. Click Finish to exit Setup.
DEWEINON	
	Finish

Figure 1-7: Installation completed

- After starting OXYGEN the first time, the software will be started in *Evaluation Mode*. In *Evaluation Mode*, all features and options are activated to test the capabilities of the software. The recording time is limited to 5 minutes in *Evaluation Mode*. In addition, OXYGEN data files can be loaded if the software is started in *Evaluation Mode*. For data review, analysis and postprocessing no software license is required.
- A software license is only required for data recording. The license can be updated under the System Information tab (see Figure 1-8). This requires a *.lic-file provided by DEWETRON.
 You can find the license on your Install Madia USP stick in the folder \files\cafturgrelOvurgen

You can find the license on your *Install Media* USB stick in the folder *files\software\Oxygen*. A license update requires a restart of Oxygen.

)xygen		
		System Ir
RECORDING		
Filename:		
File size:		
Start time:		
Timezone:		
Duration:		
LICENSE		
Creation date	: 2018-06-21	
Licensee:	DEWETRON - David Petanjek	
Serial numbe	r: Notebook	
Product:	Oxygen 3.x	
Features:	General Test and Measurement	
	Oxygen NET	
	Advanced Power Analysis	
	Bird's Eve Multi (20)	
	Remote Control: XCP	
	Remote Control: Calibration	
	Undate	Remove

Figure 1-8: Updating the OXYGEN-license

Remark: Please note that a license file for OXYGEN 2.x is not valid for OXYGEN 3.x!

 After installing a license, the license information can be found in the System Information menu (see Figure 1-9)

Figure 1-9: System Information menu

2 SOFTWARE OVERVIEW

After starting the software, the following screen will appear. OXYGEN will instantly start to acquire data but will not store it yet.

Figure 2-1: Software Overview

1	М (
1	Measurement	Default measurement screen with several instruments that display the acquired data.
	Screen	For adding or manipulating instruments on a screen, please refer to section 6.1. For
		managing several screens, please refer to section 10
2	Overview bar	Shows the time dependent trend of one selected input channel. For changing the channel, please refer to section 2.5
3	Action bar	Contains relevant push buttons
4	<i>Record</i> button	Starts or pauses REC mode
5	Stop button	Terminates an active recording or returns to the <i>LIVE</i> mode when the <i>PLAY</i> mode is active
6	Fast Forward	Only active in <i>PLAY</i> mode; A click on this button will move the cursor 5 seconds
	button	forward
7	Reverse	Only active in <i>PLAY</i> mode; A click on this button will move the cursor 5 seconds back
	Button	
8	Open Data file	Opens an UI to select a data file and switches in the PLAY mode
	button	
9	Store data	Stores changes to a data file that were made during analysis in the <i>PLAY</i> mode
	button	
10	Open Setup	Opens an UI to select a setup file
	<i>file</i> button	
11	Save setup file	Saves software settings to a setup file
	button	
12	Add Marker	Adds a marker on the actual point of time; Enabled in REC and PLAY mode
	button	

13	Lock Screen button	Locks the measurement screen
14	Design mode	Activates the <i>Design</i> mode to manipulate the surface of the measurement screens and
	button	add, delete or change the Instruments on the screen. For detailed information please
	cutton.	refer to section 6.1
15	Cursor button	Activates measurement cursors; for detailed information please refer to section 6.4.2.3
16	Freeze button	Freezes the actual screen
17	Mode	Shows the current software mode; for detailed information please refer to section 2.1
	indicator	
18	Sync mode	Shows the current Sync status of the software
	indicator	
19	Time	Shows the actual time, time zone and date
20	Quick access	Toggles between the current screen and the Data Channel list
	to Data	
	channels menu	
21	System	Opens the System Settings menu; for detailed information please refer to section 4
	Settings Menu	
22	Data	Opens the Data Channels menu; for detailed information please refer to section 5
	Channels	
	Menu	
23	Instruments	Opens the Instruments menu; for detailed information please refer to section 6
	Menu	
24	Instrument	Opens the properties of a selected Instrument; for detailed information please refer to
	Properties	section 6
	Menu	Remark: The Instrument Properties can also be opened with a double click on the
		desired Instrument
25	Triggered	Opens the Triggered Events menu; for detailed information please refer to section 7
	Events Menu	
26	Event List	Opens the Event List menu; for detailed information please refer to section 8
	Menu	
27	Export	Opens the Export Settings menu; for detailed information please refer to section 9
	Settings Menu	
28	OXYGEN Net	Opens the OXYGEN Net menu; for detailed information please refer to section 12
	Menu	
29	System	Opens the System Information that contains information about the software license and
	Information	version
	Menu	
30	Screens Menu	Opens the Screens menu; for detailed information please refer to section 10
31	Reporting	Opens the <i>Reporting</i> menu; for detailed information please refer to section 11
	Menu	

Table 2-1: Software Overview

2.1 SOFTWARE MODES

OXYGEN has three different Operating Modes: *LIVE, REC* and *PLAY*. The actual software mode is displayed in the Action bar (see (7) in Figure 2-1). The properties of the different modes are explained in the following section:

- LIVE mode: OXYGEN is only acquiring and displaying data but not storing it to a data file yet. This mode is active when OXYGEN is started, a measurement is stopped or when a data file is closed.
- REC mode: OXYGEN is acquiring data and storing it to a data file. A red line above the Action bar indicates this mode. OXYGEN stores the data automatically to a data file. An explicit command for storing the acquired data to a file is not necessary. For changing the data storing settings, please refer to section 4.1.
- PLAY mode: Mode for reviewing, analyzing and exporting data. This mode is activated after a data file was loaded. A green line above the Action bar indicates this mode.

2.2 SAVING A MEASUREMENT SETUP FILE

Figure 2-2: Saving a Setup file

- Touch or left click the gear and diskette icon in the Action Bar (see Figure 2-2 or (11) in Figure 2-1)
- Upon selecting this icon, the Save Measurement Config dialog will appear
- Within this dialog, the user can select the *Data* folder location and a *file Name*
- The *Save* button will store the current software settings to a measurement file

×		A 2/2 Sile (M. A 2/2 Sile (M. A 2/2 Sile (M. A 2/4 Sile (M.		
	Load Measurement Config Duta Folder > Dr/DaTA	D/ DXh my new setup		
	System $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	Kone	Sile Duge 1913-16 2017 GS-08 (6:17	
Al 2/5 Sim [V] AVG	a → 2 w w → 2 w w	Dente Info Channels Headers Oxygen Version: 2:A Used Plugent: Came a DEWETRON TRON		есника енника Al 2/1 Sim [V] AVG
	100	80 / Put 3/ 100 /	Concel Open 4	Time A12/1.5/m [V] 0.566700 -0.050002969731960 0.5566000 -0.011031522134947 0.5666000 -0.111031522134947 0.5666000 -0.1997270154942030 0.5666000 -0.1997270154942030 0.5666000 -0.29942000759463 0.5666000 -0.2964600292204035
	<u>⊾⊺rs</u> [#) Fi	gure 2-3: Loading a Setup f	ile	

2.3 LOADING A MEASUREMENT SETUP FILE

- Touch or left click the gear and folder icon along the bottom tool bar (see Figure 2-3 or 10) in Figure 2-1)
- Upon selecting this icon, a *Load Measurement Config* dialog will appear
- Within this dialog, the user can select the Measurement Setup he would like to open. *Info, Channels* and *Headers* contain additional information about the file to ease the search for the correct file.
- The *Open* button will open the selected Setup file
- If the measurement hardware does not match with the hardware stored in the setup file, the *Hardware Match* dialog will open (see Figure 2-4). Within this dialog, the user can rematch his connected hardware to the hardware stored in the setup file before opening it. Identical TRION[™] modules will be matched automatically or use the *Auto* button (see Figure 2-4). Clicking on *Clear* will delete the complete match that is done so far. After connecting all necessary channels, the user can click on *Apply* and the setup loading will be continued.

Setup Channels			Auto	Clear		System	Channels	
Name	Mode	Sample Rate			~	Name	Mode	Sample Ra
DEWE2-A4		7			DEV	/E2-A4		
TRION-2402-V-4-B					TRI	DN-BASE		
TRION-1620-ACC-6-B	NC	7				DN-1620-ACC-6-BN	с	
Al 2/1 Sim	Voltage	10000 Hz			AI	2/1 Sim	Voltage	10000 H
AI 2/2 Sim	Voltage	10000 Hz			AI	2/2 Sim	Voltage	10000 Ha
AI 2/3 Sim	Voltage	10000 Hz	-		AI	2/3 Sim	Voltage	10000 Hz
Al 2/4 Sim	Voltage	10000 Hz			AI	2/4 Sim	Voltage	10000 Hz
Al 2/5 Sim	Voltage	10000 Hz	_		AI	2/5 Sim	Voltage	10000 Hz
AI 2/6 Sim	Voltage	10000 Hz			AI	2/6 Sim	Voltage	10000 Hz
CNT 2/1 Sim	Events	10000 Hz				IT 2/1 Sim	Events	10000 Hz
TRION-2402-MULTI-8	-LOB				∑ TRI	DN-2400-dSTG-8-L	рВ	
TRION-2402-dACC-8-	SMB				TRI	DN-2402-MULTI-4-I)	
AI 4/1 Sim	Voltage	10000 Hz			AI	4/1 Sim	Voltage	10000 Hz
AI 4/2 Sim	Voltage	10000 Hz			A	4/2 Sim	Voltage	10000 Hz
AI 4/3 Sim	Voltage	10000 Hz			AI	4/3 Sim	Voltage	10000 Hz
Al 4/4 Sim	Voltage	10000 Hz			A	4/4 Sim	Voltage	10000 Hz
AI 4/5 Sim	Voltage	10000 Hz			C/	N 4/1 Sim	Higeed	
AI 4/6 Sim	Voltage	10000 Hz			► Vide	o Channels		
AI 4/7 Sim	Voltage	10000 Hz						
AI 4/8 Sim	Voltage	10000 Hz		/				
CNT 4/1 Sim	Events	10000 Hz	/					
CNT 4/2 Sim	Events	10000 Hz	/					

Figure 2-4: Hardware Mismatch dialog

2.4 REVIEWING A DATA FILE (PLAY MODE)

Figure 2-5: Opening a Data file

- Touch or left click the folder icon in the Action bar (see Figure 2-5 or (8) in Figure 2-1)
- Upon selecting this icon, an Open Data File dialog will appear
- Select the appropriate *Data Folder* on the left side of the menu
- Once the *Data Folder* is found, the Data file list will be populated with *.dmd Data files showing their name, size, and date of recording
- Within this dialog, the user can select the Data file he would like to open. *Info, Channels* and *Headers* contain additional information about the file to ease the search for the correct file.
- The Open button will open the selected Setup file

- Along the top of the newly opened Data file lies the Overview Bar (see Figure 2-6 or 2) in Figure 2-1). The Overview Bar displays the events that have taken place during this measurement. Such as: Start, Pause, Resume, Current playback time position, and termination of recording.
- Once the user clicks the green *PLAY* button (see 1) Figure 2-6) at the bottom of the screen the yellow playback position cursor will stream across the screen and the displays currently on the screen will then become active, displaying the data currently seen at that playback position
- Once finished reviewing the Data File, select the *Eject* button (see 2) Figure 2-6) which is located to the right of the *Play* button. After that OXYGEN will be in *LIVE* mode again and start to acquire data.

Figure 2-6: Loaded data file - Overview

Remarks:

- The *Design* mode can be activated to add, move or delete Instruments in the *PLAY* mode as well. For detailed information, please refer to section 6.1.
- The implementation of Offline Math software features has begun with OXYGEN 3.0, and the functionalities will be expanded with the proximate software releases. The available features will be explained in section 0
- A Recorder instrument is very useful during playback, because it also allows you to see all the different events that may have happened during a measurement
- The *Event List* menu (see Figure 2-6) will clearly display all events and the points of time the events occurred in a list. For adding a marker to an event, please refer to section 8.
- Changes that were applied to the data file during the analysis can be saved to the data file by pressing the diskette-button (see ③ in Figure 2-6)
- A setup file based on the settings of a data file can be created by pressing the gear-diskette-button (see (4) in Figure 2-6)

2.5 OVERVIEW BAR

The *Overview bar* gives a rough overview about the measurement data. It displays the time dependent trend of one selected data channel. During the data review and analysis, the orange box shows the position of the currently displayed data in the measurement file (see Figure 2-7). The user can change the displayed channel. Therefor he must open the *Data Channels* Menu and move the desired channel via drag and drop to the *Overview bar* (see Figure 2-8).

2.6 CUSTOM ORDERING OF MENU LOCATIONS

OXYGEN allows the user to customize his experience within the software. Users can re-order the menu selection panels on the opposing side bar. This allows the user to have multiple menus open at the same time. To change the order, the user can select the respective menu and must keep the mouse button pressed for one second. Then a blue background on the menu sign will appear. Now the user can move the menu to the desired position while keeping the button pressed. It is also possible to move a menu from the right sidebar to the left sidebar and vice versa.

Remarks:

- The user may find it difficult to place the menus back in the default order once a change has been made. To reset the position of your menus, head into System Settings > UI Options and select the Reset button found under the Sidebar position section (see 1) in Figure 2-9).
- The user can also swap the right and the left sidebar. To do so, head again into System Settings > UI Options and select Left side under the Sidebar position (see (2) in Figure 2-9).

Figure 2-9: Sidebar position reset

3 USING DEWETRON MEASUREMENT HARDWARE WITH OXYGEN

The usage of different hardware types can be enabled and disabled in the *DAQ Hardware* setup which can be found in the *System Settings*. To access, the *System Settings* must be expanded to the full screen.

3.1 USING TRIONTM HARDWARE WITH OXYGEN

- Make sure that the driver for the TRIONTM-hardware is installed. The installer is named *DEWETRON-TRION-Applications-x64.exe* and can be found in the folder \files\drivers\2_daqboards\dewetron*trion_driver\DEWETRON TRION Rx.x* of the *Install Media* USB stick which is delivered with the measurement system.
- If the driver was installed correctly, the *DEWE2 Explorer* will be available in Windows start menu
- Go to the DAQ Hardware setup in the System Settings and make sure that the TRION Series is enabled (see Figure 2-10) (Changes take effect on application restart)

Figure 2-10: Enabling the TRION Series in the DAQ Hardware setup

■ The channels of the connected TRIONTM hardware will now be visible and editable in the Channel List (see Figure 2-11):

\$			TRIONet								
N ²	DEM	O-AUSTRIA									
:=											
				CH1 0	H 2 CH 3	CH 4					
				CH 1 CH 2	CH 3 CH 4	сн 5 сн 6 2	_				
3						M02-GM					
Ŧ	All	. Sea	arch	CAN			«				
	~		Active Stored	Channel	Color Setup	Scaled Value	Mode	Sample Rate	Range		Scaling +
- I	~		TRIONet	: DEMO-AUSTRIA							R R
			TRION-24	402-dACC-6-BNC							Vance
÷				AI 1/1@DEMO-AUSTRIA	۵	-0.000302 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V 🎈
				AI 1/2@DEMO-AUSTRIA AI 1/2@DEMO-AUSTRIA TRION-24CC-6-BNC		-0.001452 AVC	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
(i)				AI 1/3@DEMO-AUSTRIA AI 1/3@DEMO-AUSTRIA TRION-24CC-6-BNC	*	-0.000849 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
				AI 1/4@DEMO-AUSTRIA AI 1/4@DEMO-AUSTRIA TRION-24CC-6-BNC	÷	-0.002416 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
				AI 1/5@DEMO-AUSTRIA TRION-24CC-6-BNC	*	-0.000194 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
	Ι.			AI 1/6@DEMO-AUSTRIA AI 1/6@DEMO-AUSTRIA TRION-24CC-6-BNC	\$	0.004658 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		~	COUNTE	R CNT 1/1@DEMO-AUSTRIA	\$						
				CNT 1/1@DEMO-AUSTRIA CNT 1/1@AUSTRIA TRION-24CC-6-BNC	*	0.000000 AVG	Events	10000 Hz	-2.14748365e748365e+009	Scale: 1 Offset: 0	Unit:
				CNT 1/1AUSTRIA TRION-24CC-6-BNC	\$	0.000000 AVG	Frequency	10000 Hz	0.001 Hz 80000000 Hz	Offset: 0	Unit: Hz
				CNT 1/1@lacement TRION-24CC-6-BNC	*	0.000000 AVG	Rotation	10000 Hz	0 ° 360 °	Offset: 0	Unit: •
				CNT 1/1@DVelocity TRION-24CC-6-BNC	*	-100000 AVC	Velocity	10000 Hz	-100000 rpm 100000 rpm	Offset: 0	onic rpm
			COUNTE	R CNT 1/2@DEMO-AUSTRIA	\$	0.000000 AV/				Scale: 1	Unit
				CNT 1/2@AUSTRIA TRION-24CC-6-BNC Frequency C EMO-AUSTRIA	*	-2147483548 2147483547 0.000000 AVG	Events	10000 Hz	-2.14748365e748365e+009	Offset: 0 Scale: 1	Unit: Hz
				CNT 1/2AUSTRIA TRION-24CC-6-BNC Angle CNT 1/DEMO-AUSTRIA	() () () () () () () () () () () () () (0.000000 AVG	Frequency	10000 Hz	0.001 Hz 80000000 Hz	Offset: 0 Scale: 1	Unit: °
				CNT 1/2@la comment TRION-24CC-6-BNC Speed CNT 1EMO-AUSTRIA	*	0.000000 AVG	Rotation	10000 Hz	100000	Offset: 0 Scale: 1	Unit: rpm
	Ļ		TRION-24	CNT 1/2@DVelocity TRION-24CC-6-BNC	- ×	-100000 100000	Velocity	10000 HZ	200000 rpm 200000 rpm	Offset: 0	
	Ì			AI 2/1@DEMO-AUSTRIA	a	0.000097 AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1	Unit: V
				AI 2/2@DEMO-AUSTRIA TRION-2402-MULTI-4-D AI 2/2@DEMO-AUSTRIA	÷	0.000167 AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1	Unit: V
				AI 2/3@DEMO-AUSTRIA TRION-2402-MULTI-4-D AI 2/3@DEMO-AUSTRIA		0.000100 AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V
				AI 2/4@DEMO-AUSTRIA TRON-240-MULTI-4-D		0.000125 AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V
				CAN 2/1@DEMO-AUSTRIA	· ·	used as analog	HighSpeed			2.1.000.0	

Figure 2-11: Overview of connected TRION[™] hardware in the Channel List

3.1.1 USING A TRIONET[™] IN OXYGEN

- In addition to the steps explained in section 3.1, the following steps must be respected if TRIONTM hardware is used in combination with a TRIONetTM
- Choose 'Auto' from the 'Network Interfaces' drop-down menu (see Figure 2-12). This will scan all ethernet ports and automatically detect the TRIONet device

🛆 *uns	saved - Oxygen					
Ø	System Settings	DAQ Hardwa	re			
	No					
	Measurement Setup					
	Header Data		KA Series			
	Advanced Setup	DAQF	Series			
.	Hardware	EPAD Series				
۶	Sync Setup	GIGE	GIGECAMERA Series ORIONDAQ Series			
	DAQ Hardware					
	Extensions and Plugins	ORIONDSA Series SIM Series TRION Series				
-	Remote Control					
	User Interface					
(i)	UI Options					
	Localization	NETWORKINT	ERFACES			
		Interface Name	Auto			
	System Actions	Addresses	Off			
	Shutdown	Netmasks	Auto			
			Ethernet 3			
		DAQP / EPAD S	E Loopback Pseudo-Interface 1			
		Active: SIM0	Ethernet 4			

Figure 2-12: Network Interface settings

• The IP-address of the adapter is shown in the field below (see Figure 2-13)

NETWORK INTERFACES								
luto								
92.168.9.33,169.254.230.79,127.0.0.1								
255.255.252.0,255.255.0.0,255.0.0.0								
	uto 92.168.9.33,169.254.230.79,127.0.0.1 55.255.252.0,255.255.0.0,255.0.0.0							

Figure 2-13: IP addresses of connected TRIONet[™]s

■ Now switching to *Channel List* will display the TRIONetTM and installed modules

Remark: Besides the TRION[™] hardware driver, there is no additional driver required to use a TRIONet[™] with your measurement system. For additional information about the TRIONet[™] and troubleshooting, please refer to the TRIONet[™] Technical Reference Manual.

3.2 Using EPAD2s with OXYGEN

3.2.1 USING EPAD2s WITH OXYGEN ON A DEWE OR DEWE2 SYSTEM

For connecting an EPAD2-module with your hardware, the DEWE-and DEWE2-series products (except TRIONetTM) have a connector on the housing marked with the word *EPAD* (see Figure 2-14).

Figure 2-14: Connection of EPAD-modules

- Expand the *System Settings* menu fully across the screen
- Select the DAQ Hardware section and ensure the slider button next to the EPAD Series is activated (see Figure 2-15) (Changes take effect on application restart)

ø	System Settings	DAQ H	ardware
	Measurement Setup		
	Header Data		CAMERA Series
0	Advanced Setup		DAQP Series
E	Hardware		EPAD Series
Ŧ	Sync Setup		GIGECAMERA Series
\mathbf{F}	DAQ Hardware		ORIONDAQ Series
	Extensions and Plugins		ORIONDSA Series
-	Remote Control		SIM Series
Ť.	User Interface		TRION Series
(i)	UII Ontinge		

Figure 2-15: Enabling the EPAD Series in the DAQ Hardware setup

 Select the proper Serial Port for your EPAD2-module by clicking on the Select ports... button (see Figure 2-16). Systems in Europe are typically assigned to COM2 and systems in the USA are typically assigned to COM3)

Active: COM 2		
	Select ports	

Figure 2-16: Selection of the proper COM port

Press the Scan for modules button (see Figure 2-17). The system will scan the selected Serial Port for any present EPAD2-modules. The status can be seen in the lower right corner of the software

QP / EPAD	MODULES	
	Scan for modules	_
	Program module addresses	

Figure 2-17: Scan for modules button

If an EPAD2-module is found, the user will be presented with a message in the lower right corner of the software (see Figure 2-18) stating that the software has found an EPAD2-module

 If you have multiple EPAD2-modules daisy chained together, the user can select the *Program module* addresses... button (see Figure 2-19)

AQP / EPAD M	ODULES	
	Scan for modules	
	Program module addresses	

Figure 2-19: Program module addresses button

- Next, select the starting EPAD2 address (cannot be 0) and then select Start programming (see Figure 2-20)
- Once the programming has begun, the software will ask you to press the black *ID* button (see Figure 2-21) on the first EPAD2-module. Then it will increment the address in the software by one. At this point you will press the second EPAD2s' black *ID* button and so on.
- When finished programming, select the *Stop Programming* button (see Figure 2-20).

	Address: 0 + -
	Stop programming
Module Programming on COM3 Address: 0 + -	Press ID Button on Module to program address 0 on COM3
Start programming	U
Close	ATTENTION: address 0 will not work with EPAD modules!

Figure 2-20: EPAD-programming procedure

Figure 2-21: Front of an EPAD2-module

3.2.2 USING EPADS WITH OXYGEN VIA EPAD2-USB MODULE

EPAD2 modules can also be used as stand-alone measurement solution (CVT-Logger) without DEWE or DEWE2 hardware. Therefore, they can be connected via the EPAD2-BASE module to the measurement PC. This is also a solution for using EPAD2 modules in combination with a TRIONet[™] which has no EPAD connector.

Please make sure that the driver for the EPAD2-USB module is installed on the measurement PC. The *setup.exe* file can be found in the folder *files\drivers\3_communication\dewetron_usb* of the *Install Media* USB stick which is delivered with the EPAD2-USB module. After finishing the driver installation, the EPAD2 module can be programmed in OXYGEN in the same manner which is explained in section 4.1.1. The correct COM port can be found in the Device Manager of your PC in this case. The COM port which is called *TUSB3410 DEVICE* is the correct one (see Figure 2-22).

Figure 2-22: COM port section in the Device Manager

3.2.3 TROUBLESHOOTING

If no EPAD module is found during the scan for modules although it is connected, check the following items and then rescan for EPAD2-modules:

- Ensure your EPAD2 is compatible with OXYGEN (in OXYGEN 3.1 all EPAD-modules except EPAD-AO4 and EPAD-BASE2 are supported)
- Check to see if the EPAD2 is properly connected to the system
- Make sure the LED beneath the ID push button is illuminated when the EPAD2 is connected to the system
- Choose another COM port, and rescan for the EPAD2 modules
- If using several EPAD2-modules, ensure that the terminating resistor is in place

3.2.4 EPAD -CHANNEL LIST

- After the programming of the EPAD2-module(s) is finished, close the System Settings menu and fully open the Data Channels menu across the screen
- The EPAD2-module(s) are now visible in the system overview at the top of the Channel List (1) and are available in an own EPAD-channel section in the Channel List (2) (see Figure 2-23)
- The Channel List can also be filtered to EPAD-channels
- By clicking the Up and Down arrow next to the picture of the EPAD-module, the user can quickly navigate between several EPAD-modules connected to the system

-													
ä			IRIONet										
~	Loc	alNode											
:=			EPAD2JTHRJ	_									
- 104							Add	r. 1					
			5555555 O										
\smile							(::)((
E						ᅬᆈᆈᆈ		91					
<u></u>				CHO	СН1 СН2 СН3 СН4	4 CH5 CH6 CH7	EPAD:	2-TH8					
4													
_ F	Au _	Se	arch	T _X					«				
	× 🛛	₿×	Active Store		Channel	Color Setup	Scaled V	alue	Mode	Sample Rate	Range		Scaling +
<u> </u>	17			Al 2/2 Sim	THOM 202 GIVE COMP		0.000000	AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1	Unit: V
1				AI 2/2 AI 2/3 Sim	TRION-2402-dACC-8-SMB		-100	AVG	Vellage	10000 -	1001/ 1001/	Scale: 1	Unit: V
_				AI 2/3	TRION-2402-dACC-8-SMB	*	-100	100	voitage	10000 HZ	-100 V 100 V	Offset: 0	
-fin				AI 2/4 SIM	TRION-2402-dACC-8-SMB	۵	-20.031998	100	Voltage	10000 Hz	-100 V 100 V	Offset: 0	Unit: V
				Al 2/5 Sim	TPION-2402-4400-8-5MB	۵	-59.967993	AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
(i)				Al 2/6 Sim	TROUGH AND AND AND	e	-69.919992	AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1	Unit: V
				AI 2/6	TRION-2402-dACC-8-SMB		0.000000	AVG		10000 11	1001/ 1001/	Scale: 1	Unit: V
				AI 2/7	TRION-2402-dACC-8-SMB	*	-100	100	voitage	10000 HZ	-100 V 100 V	Offset: 0	11-26-M
	1			AI 2/8	TRION-2402-dACC-8-SMB	\$	-100	100	Voltage	10000 Hz	-100 V 100 V	Offset: 0	Unit. V
			COUNT	FER CNT 2/1	Sim	@							
				CNT 2/1 S	im	¢	7.708300e+4	AVG	Events	10000 Hz	-2.14748365e748365e+009	Scale: 1	Unit:
				Frequency	_CNT 2/1 Sim		1.000000e+6	AVG	Frequency	10000 Hz	0.001 Hz 8000000 Hz	Scale: 1	Unit: Hz
				CNT 2/1_Sub	TRION-2402-dACC-8-SMB		5.419922e+4	AVG	Trequency	10000112	0.001112 1. 0000000112	Offset: 0 Scale: 1	Unit *
	н.			CNT 2/1_Displa	cement TRION-24CC-8-SMB	•	0	381	Rotation	10000 Hz	0 ° 360 °	Offset: 0	onita
				Speed_CN CNT 2/1_Velocit	T 2/1 Sim ty TRION-2402-dACC-8-SMB	۰	1.171875e+5	AVG 100000	Velocity	10000 Hz	-100000 rpm 100000 rpm	Scale: 1 Offset: 0	Unit: rpm
			COUNT	FER CNT 2/2	Sim	令							
				CNT 2/2 Si	im	a	1.541663e+5	AVG	Events	10000 Hz	-2.14748365e748365e+009	Scale: 1	Unit:
				Ent 2/2	CNT 2/2 Sim		-2147483848 1.000000e+6	2147483647 AVG	Comment	10000 -	0.001.11=00000000.11=	Scale: 1	Unit: Hz
				CNT 2/2_Sub	TRION-2402-dACC-8-SMB	*	1.001	80000001	Frequency	10000 Hz	0.001 HZ 80000000 HZ	Offset: 0	Lincity 9
				CNT 2/2_Displa	cement TRION-24CC-8-SMB	\$	0	381	Rotation	10000 Hz	0°360°	Offset: 0	Unit
				Speed_CN CNT 2/2 Velocit	T 2/2 Sim	۵	1.171875e+5	AVG	Velocity	10000 Hz	-100000 rpm 100000 rpm	Scale: 1 Offset: 0	Unit: rpm
	~		EPAD										2
			EPAD2-	TH8-T									C
				EPAD 1/0			4.00000e+2	ACT	-		TC Type T		Unit: °C
				EPAD 1/0	EPAD2-TH8-T	\$	-270	401	lemperature	10 Hz	-270 degC _ 400 degC	Offset: 0	
				EPAD 1/1 EPAD 1/1	EPAD2-TH8-T	<u>چ</u>	4.000000e+2	ACT 400	Temperature	10 Hz	-270 degC _ 400 degC	Offset: 0	Unit: "C
				EPAD 1/2	EDID2.THE.T	۵	4.000000e+2	ACT	Temperature	10 Hz	TC Type T	Scale: 1 Offset: 0	Unit: °C
				EPAD 1/3	Crock Ther		4.000000e+2	ACT	Temperature	10 Hz	TC Type T	Scale: 1	Unit: °C
				EPAD 1/3 EPAD 1/4	EPAD2-TH8-T		4.000000e+2	400 ACT	Tananakan	1011-	-270 degC _ 400 degC TC Type T	Scale: 1	Unit: °C
				EPAD 1/4	EPAD2-TH8-T		-270	400 ACT	remperature	10 HZ	-270 degC400 degC	Offset: 0	Linth 9C
				EPAD 1/5 EPAD 1/5	EPAD2-TH8-T	\$	+.000000e+2	400	Temperature	10 Hz	-270 degC _ 400 degC	Offset: 0	Unit: *C
				EPAD 1/6 EPAD 1/6	EPAD2-TH8-T	۰	4.000000e+2	ACT	Temperature	10 Hz	TC Type T -270 derC _ 400 derC	Scale: 1 Offset: 0	Unit: °C
				EPAD 1/7		۰	4.000000e+2	ACT	Temperature	10 Hz	TC Type T	Scale: 1 Offset: 0	Unit: °C

Figure 2-23: EPAD-Channel List

Remark: If no thermocouple is connected to an EPAD-channel, the value 2501.6 °F (1372.0 °C) is displayed.

3.3 Using DAQP/HSI MODULES WITH OXYGEN

3.3.1 CONNECTING DAQP/HSI MODULES VIA AN ORION CARD TO THE MEASUREMENT SYSTEM

DEWE-ORION-xx16-xxx boards

If the DAQP/HSI modules are connected via DEWE-ORION-xx16-xxx boards to the measurement system, go to the *DAQ Hardware* setup and make sure that the *ORIONDAQ Series* hardware is enabled as well as the *DAQP Series* (see Figure 2-25) (Changes take effect on application restart) and that the proper driver is installed.

The installer is named DeweDevSetup_x64.exe for 64-bit systems and DeweDevSetup_x86.exe for 32bit systems and can be found in the folder *files\drivers\2_daqboards\dewetron\orion_driver\DAQ-BOARDS_DRIVER_v2.1.0.0* of the *Install Media* USB stick which is delivered with the measurement system.

DEWE-ORION-xx22-xxx and DEWE-ORION-xx24-xxx boards

If the DAQP/HSI modules are connected via DEWE-ORION-xx24-xxx or DEWE-ORION-xx22-xxx boards to the measurement system, go to the DAQ Hardware setup and make sure that the ORIONDSA Series hardware is enabled as well as the DAQP Series (see Figure 2-25) (Changes take effect on application restart) and that the proper driver is installed.

The installer is named DeweDevSetup_x64.exe for 64-bit systems and DeweDevSetup_x86.exe for 32bit systems and can be found in the folder *files\drivers\2_daqboards\dewetron\orion_driver\DSA-BOARDS_DRIVER_v4.1.0.0* of the *Install Media* USB stick which is delivered with the measurement system.

\$	System Settings	DAQ Hardware
	Measurement Setup	
	Header Data	CAMERA Series
	Advanced Setup	DAQP Series
i,	Hardware	EPAD Series
F	Sync Setup	GIGECAMERA Series
	DAQ Hardware	ORIONDAQ Series
	Extensions and Plugins	ORIONDSA Series
-	Remote Control	SIM Series
Ť.	User Interface	TRION Series

Figure 2-25: Enabling the ORION DAQ/DSA Series in the DAQ Hardware setup

3.3.2 Connecting DAQP/HSI Modules via a TRIONTM-1802/1600-dLV Card to the Measurement System

- Go to the DAQ Hardware setup in the System Settings and make sure that the DAQP Series and the TRION Series are enabled (see Figure 2-26) (Changes take effect on application restart).

©	System Settings	DAQ Hardware
	Measurement Setup	
	Header Data	CAMERA Series
0	Advanced Setup	DAQP Series
E.	Hardware	EPAD Series
Ŧ	Sync Setup	GIGECAMERA Series
\mathbf{F}	DAQ Hardware	ORIONDAQ Series
	Extensions and Plugins	ORIONDSA Series
	Remote Control	SIM Series
	User Interface	
$\hat{\mathbf{G}}$		- Inton Series

Figure 2-26: Enabling DAQP and TRION[™] hardware in the DAQ Hardware setup

- Make sure that the driver for the TRIONTM-hardware is installed. The installer is named *DEWETRON-TRION-Applications-x64.exe* and can be found in the folder \files\drivers\2_daqboards\dewetron*trion_driver\DEWETRON TRION Rx.x* of the *Install Media* USB stick which is delivered with the measurement system.
- If the driver was installed correctly, the DEWE2 Explorer will be available in Windows start menu

3.3.3 PROGRAMMING THE MODULES ADDRESSES

Active: TRIONE	et[0]:SLOT2@Main System	
	Select ports	
	MODILLES	
JAQP / EPAD I	MODULES	
JAQP / EPAD I	Scan for modules	

Figure 2-27: Programming module addresses

- Enable the Serial Port(s) on which the modules are connected (see (1) in Figure 2-27)
- Select the proper output range of the module in the Advanced Setup (see section 4.3)
- Click on *Program module addresses...* (see (2) in Figure 2-27).

TRION: S	LOT2@Main S	ystem		~
Address:	0		+	-
	Start (programming		

Figure 2-28: Module programming UI

- Select the proper Serial Port and click on *Start programming* (see Figure 2-28Figure 2-28). If the modules are connected to several serial ports, the Programming must be repeated for each serial port
- The following window will appear:

Module	Progra	mming
--------	--------	-------

	1 <u>11</u> 11111111		
	Stop pro	gramming	
FRION: SLC	T2@Main Syste	em	
	()	$\mathbf{)}$	

Figure 2-29: Programming the module addresses

Keep the ID button of the DAQP/HSI module pressed until the Address increases. Repeat that
procedure for all DAQP modules. After finished, press on Stop programming and close the
window by pressing Close & Scan (see Figure 2-30) or start the programming for a further Serial
Port

Module Programming

	Close &	Scan	
	Start prog	ramming	
Address:	8	+	-
TRION: S	LO I Z@Main System	n	~

Figure 2-30: Finish the module programming

- OXYGEN will now read the actual settings from the DAQP modules and write them to the channel settings in the software

Remark:

• A click on *Scan for modules* will only scan for modules that have already been programmed and store the actual module settings

-	The modules will appear in the Channel List now and the settings can be edited
-	The modules will appear in the Channel List now and the settings can be edited

南				TRION	Vet								DAQP	DAQP	DAQP	DAQP	DAQP	DAQP	DAQP	DAQP					
141	Ma	ain Syster	m	FROM									£	E.	E	£	£	E.	£	£					
:=			-		_								Syste	Syste	Syste	Syste	Syste	1 Syste	Syste	II Syste					
							DIO			ANALOG IN			STG	STG	STG	STG	Mul	MUL	MUL	MUL					
0						2	• [•	•[::::			AMP	AI 2/1@	AI 2/2@	AI 2/3@	AI 2/4@	AI 2/5@	AI 2/6	AI 2/7@	AI 2/8@					
3						-		IRIG DC	GPS	AUX DIO		TIMING	0	1	2	3	4	5	6	7					
4	A.II												-	A					_					_	
_	All		Search	l	TX				_	80		~~													
	~	- so	Active	Stored	1	Chan	nel	Color	Setup	Scaled Va	alue		Mode		I	Samp	le Rate		Į.	Ra	nge	1	Scaling		+
_	~			TRIONe	et: Main S	ystem																			g
				TRION-	TIMING																				lvand
$\hat{\mathbf{O}}$					DI 1/1@	Main Sys	tem		۲	1.000000	AVG	C	Digital In			100	00 Hz			0	. 1				Ac
					DI 1/2@	Main Sys	tem			1.000000	AVG	0	Digital In			100	00 Hz			0	1				
	Hr.				DI 1/2@Mai	Main System	tem		ø	1.000000	AVG	г) igital In			100	00 Hz			0	1				
	H.				DI 1/3@Mai	Main System	tem	-	御	1.000000	AVG	F)igital In			100	00 Hz			0	1				
	Hr.				DI 1/4@Mei DI 1/5@	in System Main Sys	TRION-TIMING		-	1.000000	AVG	-	Naika I Iu			100				0					
	ш				DI 1/5@Mei	Main System	TRION-TIMING	-		1.000000	AVG		Signat in			100	0112								
	ш				DI 1/6@Mei	in System	TRION-TIMING		ųr.	1 000000	AVG	L	Jigital in			1001	JU HZ			0	1				
	н.				DI 1/7@Mai	in System	TRION-TIMING	-	٩	0	1	L	Digital In			100	00 Hz			0	1				
	ш				DI 1/8@Mei	in System	TRION-TIMING		礅		AVG	0	Digital In			100	00 Hz			0	1				
					CNT 1/1@M	L@Main S lein System	ystem TRION-TIMING		-	0.000000	AVG 2147483647		Events			100	00 Hz		-2.147	48365e.	.748365e+009	Scale: 1 Offset: 0		Unit:	
				TRION-	1802-dLV	-16-D																			
					Al 2/1@	Main System	tem DAOP-STG		\$	-9.999998	AVG		Voltage			100	00 Hz			-10 V	10 V	Scale: 1 Offset: 0		Unit: V	
				0	AI 2/2@	Main Sys	tem		礅	-9.999998	AVG	,	Voltage			100	00 Hz			-10 V	10 V	Scale: 1 Offset: 0		Unit: V	
	III.			0	AI 2/3@	Main Sys	tem		۲	-9.999998	AVG		Voltage			100	00 Hz			-10 V	10 V	Scale: 1 Offset: 0		Unit: V	
					Al 2/4@	Main Sys	tem		۰	-9.999998	AVG	,	Voltage			100	00 Hz			-10 V	10 V	Scale: 1		Unit: V	
				D	AI 2/4@Mail	Main System	tem		۵	-0.110300	AVG	1	Voltage			100	00 Hz			-5 V	5V	Scale: 1		Unit: V	
				0	AI 2/5@Mail	Main System	tem		-	0.002761	AVG	,	Voltage			100					EV	Scale: 1		Unit: V	
				2	AI 2/6@Mai	Main System	DAQP-MULTI		str.	-0.014463	AVG		vonage			1000	20112			-5 V		Offset: 0 Scale: 1		Unit: V	
				0	AI 2/7@Mai	in System	DAQP-MULTI		-	0.073655	AVG		voitage			100	JUHZ			-5 V	5 V	Offset: 0 Scale: 1		Unit: V	
				U	AI 2/8@Mai	in System	DAQP-MULTI		(i)	5	5	1	Voltage			100	00 Hz			-5 V	5V	Offset: 0		onic d	

Figure 2-31: DAQP/HSI modules in the Channel List connected via TRION™-1802-dLV

Remarks:

- Counter and Digital channels of an ORION card are not supported by OXYGEN
- CAN channels of an ORION card are supported by OXYGEN and can be found at the bottom of the Channel List

4 SYSTEM SETTINGS

The OXYGEN System Settings can be accessed via enlarging the System Settings menu to the full screen.

Remark: A single click on any menu button will show a small view of the menu that contains the most important functionalities and information. Keeping the left mouse button on the menu button pressed and moving the mouse to the opposite side of the screen will expand the menu to the full screen and show all options.

System Settings
Measurement Setup
Header Data
Advanced Setup
Hardware
Sync Setup
DAQ Hardware
Extensions and Plugins
Remote Control
User Interface
UI Options
Localization
System Actions
Shutdown

Figure 4-1: System Settings – Overview

The content of the individual submenus will be explained in the following sections in detail.

4.1 MEASUREMENT SETUP

System Settings	Measurement Setup	
Measurement Setup	DATA STORING	MULTI-FILE
Header Data	Data folder: C:/DATA/	Browse
Advanced Setup	Filename prefix:	Split by duration
Hardware		
Sync Setup	Filename preview: m. vyvymmdd, hhmmss.dmd	Split by number of recording events
DAQ Hardware	Export folder:	
Sensors	C:/DATA	Browse
Extensions and Plugins	Ask for filename before recording start	
Overview		
Remote Control	Load Save Reset to defaults	
User Interface UI Options		
Localization		
System Actions		
Shutdown	Empty setup	
	Last setup	
	C Load setup file	
		Browse

Figure 4-2: System Settings Measurement Setup – Overview

4.1.1 GENERAL SETTINGS

Data storing: The folder to which data shall be stored, a prefix for data-filename and a folder to which data shall be exported can be specified here.

To specify a filename before recording start enable the button *Ask for filename before recording start*.

Ask for filename before recording start

Figure 4-3: Enabled Ask for filename before recording start button

If this button is enabled, a popup window (see Figure 4-4) will appear where the filename can be entered.

Remark: the recording only starts by clicking on the *Record* button (marked red in Figure 4-4) in the popup window after entering the filename.

Record Data File as			
Data Folder	C:/ DATA DATA		
> 📜 C:/DATA	Name	Size	Date
System	🛆 m_20190905_221939.dmd	4.0 MB	2019-09-05 22:19
> ы c:/	🛆 m_20190905_220846.dmd	3.5 MB	2019-09-05 22:08
> 🥪 V:/			
> 🧹 Z:/			
	Delete		
	File name		
	File type		
		Cancel	Record

Figure 4-4: Popup window to enter the filename before recording start

- Measurement Setup: A measurement setup file can be loaded or stored here. To reset the Measurement settings to the startup defaults, use the Reset to defaults button.
- Startup Behavior: The user can select if the Default setup file (see Figure 2-1), an Empty setup file, the Last setup file or a user defined setup file shall be opened when OXYGEN is started.

4.1.2 MULTI-FILE RECORDING

Figure 4-5: Multi-file menu

4.1.2.1 Recording a Multi-File

Especially during long measurement campaigns, it might be useful if data is not stored to one single file but to several individual files. Among others, this mechanism allows the user to analyze and post-process data from the beginning of the measurement while the measurement itself is still running. This mechanism is called *Multi-File Recording*.

If *Multi-File Recording* is enabled (see (1) in Figure 4-5), OXYGEN supports two different ways to split files: *Split by duration* and *Split by number of recording events*.

4.1.2.1.1 Split by duration

If *split by duration* (see (2) in Figure 4-5) is selected, OXYGEN stores data automatically to a new file if the defined time interval is exceeded. I.e. in the example of Figure 4-5, a new data file will be created after 10s, 20s, 30s, ... overall recording time. The minimum time interval is 10 seconds.

Special Case: *Split by Duration* in combination with enabled Event Based Waveform Recording and disabled *User Reduced Statistics Recording* (see section 7).

With this combination, it can happen that no data is stored to a Multi-File part. The following cases might appear:

No data recording after arming the Trigger:

If it takes a certain time after arming Trigger and the first occurring Recording Event, the time between arming the Trigger and the first occurring Recording Event will be rejected and the 'Os' position will be shifted to the Arm Trigger position to the first occurring Recording Event. Thus, the first data file begins not at the position the Trigger is armed but at the position the first Recording Event occurs. The following Figure 4-6 will illustrate this case:

• No data recording between two Recording Events:

If the time between two occurring Recording Events is longer than the specified Split time interval, an empty data file created. (see *File 3* in Figure 4-6)

No data between the last occurring Recording Event and disarming the Trigger If it takes a certain time between the last occurring Recording Event and disarming the Trigger, the time within will be rejected and no new data file will be created. The following Figure 4-7 will illustrate that case.

This is also the reason why the *Split Stop/Start* Marker is only created retroactively if a new Recording Event occurs and not at the exact time the split duration is exceeded.

Remark: If *User Reduced Statistics Recording* is enabled for the upper explained special case, this special case will not be applied, because (statistics) data will be recorded continuously.

4.1.2.1.2 Split by number of recording events

If *split by number of recording events* (see ③ in Figure 4-5) is selected, OXYGEN creates a new data file if the defined number of recording events is reached. I.e. in the example of Figure 4-5, a new data file will be created after the 2nd, 4th, 6th, ... recording event is terminated.

Special Case: If *Split by number of recording events* is used in combination with a pre-recording time which lasts back to the Recording Event that occurred before, both Recording Events will be regarded as one entire Recording Event, because they are connected by the pre-recording time. The following will illustrate this case for a recording split after two events:

Remarks:

- The Deja View[™] functionality (see section 6.4.3) is applicable during Multi-File recording as well.
- The instant of time a new data file is created is visible in the Event List (see section 8) as Split Start and Split Stop marker (see Figure 4-9).

Ø	Event List		
=	Event	l Time	
_	Recording Start	0:00.00000000	
	Split Start	0:00.000000000	
	Split Stop	0:10.00000000	
	Split Start	0:10.00000000	
	Split Stop	0:20.00000000	
F	Split Start	0:20.00000000	
-	Split Stop	0:30.00000000	
	Split Start	0:30.00000000	
-	Split Stop	0:30.635200000	
-	Recording Stop	0:30.635200000	

Figure 4-9: Split Start and Split Stop Marker

4.1.2.2 Loading a Multi-File

Multi-File parts that belong to the same measurement are stored in a separate folder of the selected data storing folder (see section 4.1.1). The individual Multi-Files are enumerated starting with 1. To load Multi-Files, click on the *Open Data File* button (see Figure 4-10) and select the desired Multi-File data folder. The folder is named to the same manner as datafiles are named. Thus, a prefix can be freely defined, and the actual date and time is appended automatically to the folder name (see section 4.1.).

After selecting the correct folder, the single Multi-Files are shown in a list. The *Info* tab shows if the selected file(s) is (are) a part(s) of a Multi-File-Recording and the number of compatible parts selected (see Figure 4-11). It is possible to open all parts (see Figure 4-12), several parts (see Figure 4-13) or only one single part (see Figure 4-14) of a Multi-File recording. The file selection can be done with the check boxes which are placed left to the file name. If several or all parts are opened, they are displayed in the correct chronological order.

D:/ Oxygen MultiFile_Test misc_20180315_125955		
Name	Size	Date
misc_20180315_125955_1.dmd	197.7 kB	2018-03-15 13:02
misc_20180315_125955_2.dmd	197.8 kB	2018-03-15 13:02
✓ ▲ misc_20180315_125955_3.dmd	157.7 kB	2018-03-15 13:02
Delete		
Info Channels Headers		
Oxygen Version: 3.0 RC1		
Recording Start: 2018-03-15 12:59:55 - Europe/Vienna UTC+1:00		
Duration: 000 d 00:00:10.000		
Max. Samplerate: 1000 Hz		
Multifile part: Yes		
3 compatible parts selected		
-	Cancol	0000
	Cancel	Open

Figure 4-11: Opening a Multi-File

Figure 4-12: Opening all parts of a Multi-File Recording

Figure 4-14: Opening one part of a Multi-File Recording

If several parts are selected that are not part of a Multi-File Recording or don't belong to the same Multi-File Recording, an information will be displayed in the *Info* tab and the *Open* button will be disabled (see Figure 4-15).

D:/ Oxygen MultiFile_Test		
Name	Size	Date
misc_20180315_103044.dmd	116.0 kB	2018-03-15 10:30
misc_20180315_102929.dmd	168.0 kB	2018-03-15 10:29
misc_20180315_125955	-	2018-03-15 13:00
misc_20180315_125934	-	2018-03-15 12:59
misc_20180315_103221	-	2018-03-15 10:32
misc_20180315_103105	-	2018-03-15 10:31
misc_20180315_102735	-	2018-03-15 10:28
misc_20180315_102615	-	2018-03-15 10:27
Delete		
Xxygen Version: 3.0 RC1 Recording Start: 2018-03-15 10:30:44 - Europe/Vienna UTC+1:00 Juration: 0000 d 00:00:04.762 Aax. Samplerate: 1000 Hz Authfrile part: No		
	Cancel	Open

Figure 4-15: Selection of non-compatible Multi-File parts

If several Multi-File parts are opened simultaneously and data shall be exported, data is exported to one file. If data of Multi-file parts shall be exported to separate files, the Multi-File parts must be opened and exported successively.

4.2 GLOBAL HEADER DATA

System Settings	Header Data						
Measurement Setup	Name	1	Description	Prompt	. I.	Mandatory	+
Header Data	Company	= Dewetron		Never			-
Advanced Setup	Operator	= User Guide		Recording start			-
Hardware	Oxygen Version			Recording start	.4		-
Hardware	Figuro	A 16: Sustam Sat	tings Header Data - Ov	anviow.			

Figure 4-16: System Settings *Header Data* – Overview

The user can define Header Data here by clicking on the *+* in the upper right corner or remove it again by clicking on the – behind the respective header information. When Header Data is added, a name must be assigned to the certain header information and a description can be added. It can also be selected if the header information shall be prompted at the recording start (see Figure 4-17). If this option is selected, the description of each Header Information can be changed there by the certain operator. If *Mandatory* is selected, the operator must fill in information in the respective Header Description at the recording start. Otherwise the UI cannot be closed.

Name		Description		
Operator	= User Guide			
Dxygen Version				

Figure 4-17: Header Data UI at the recording start

When a data or setup file is loaded, the user can also look at the Header Data here to facilitate the search for the correct data file (see Figure 4-18).
Name	Description
Company	Dewetron
Operator	User Guide
Oxygen Version	2.4

Figure 4-18: Header Data information when loading a data file

It is possible to add the Headers in a Text Box (please refer to section 6.10) on the measurement screen. Three different procedures exist for adding Headers in a Text Box:

Select the desired Header information at the Header Name in the small view menu of the System Settings and add it by Drag and Drop to the Measurement Screen (see Figure 4-19)

	10	DATA CTODING
0.42.0 0.44.0 0.45.0 0.42.0 0.50.0	1	DAIASTORING
	0	Filename prefix: Test
	5	Filename preview: Testyyyymmdd_hhmmss.dmd
Company: Dewetron	*	HEADER DATA
		Company
	-	Dewetron
	0	User Guide
	Š	Oxygen Version
	Company: Dewetron	Company: Dewetron

Figure 4-19: Adding Header Data via drag and drop from the System Settings to the measurement screen

Header information can also be added to an existing Text Box by dragging and dropping it into it.

• Create a Text Box and go to its Instrument Properties. Created Header Data is there visible, too and can be added to the Text Box via a double click on the individual Header Data or via drag and drop

Figure 4-20: Adding Header Data via drag and drop from the Text Box Instrument Properties to the measurement screen

Create a Text Box and type in the Header Data Name according to the following syntax: \${Header Data Name} and the Header Data Description will show up in the Text Box (see Figure 4-21).

Figure 4-21: Adding the Header Description in a Text Box

4.3 ADVANCED SETUP

Figure 4-22: System Settings Advanced Setup – Overview

- Instruments: In the Instruments section, DejaViewTM can be enabled/disabled. By default, DejaViewTM is always enabled. For a detailed description of DejaViewTM please refer to section 6.4.3.
- DAQP Modules: If DAQP/HSI modules are connected via ORION or a TRION-1802-dLV module, it must be defined if the output signal of the module is conditioned to ±5V or ±10V. The Output Range can be defined here.
- System Time Synchronization: If an IRIG or GPS signal is received via a TRION-BASE (IRIG only), TRION-TIMING or TRION-VGPS module and if this signal is used for synchronization, the system time of the PC OXYGEN is running on can be set to this timing signal. For synchronization with an external timing source, please refer to section 4.4.3. The synchronization interval can be selected below and the minimum time interval is 10 seconds.

Remark: OXYGEN must be started with Administrator rights to use this function as this functionality changes the system settings of the PC. If OXYGEN is started without Administrator rights but this functionality is activated, the error message *System time synchronization not allowed* (see Figure 4-23) will be displayed in the lower right corner of the software. Please note that this setting is not stored to a dms-setup file but only to the registry.

4.4 SYNC SETUP - SYNCHRONIZATION OPTIONS USING OXYGEN WITH TRIONTM HARDWARE

With DEWE2/3 instruments there is nearly no limit when synchronizing systems with each other. The synchronization of the devices is either done via an Internal 10 MHz clock, TRION-SYNC-BUS (SYNC I/O, SYNC OUT), IRIG, PPS, PTP/IEE1588 or GPS. The synchronization options are depending on model and configuration of the DEWE2/3 instruments.

- The synchronization input represents the input configuration of a device on how this instrument "gets" the input signal from any source or "generates" an input signal.
- The synchronization output represents the output configuration of a device, which defines what kind of signal this instruments routes to the corresponding output, in order to synchronize with the next connected device.

4.4.1 INTERNAL TIMING SOURCE

Each DEWE2/3 chassis has an internal 10 MHz clock which is used as the clock source in this particular DEWE2/3 system. This internal clock is used per default for synchronization. Therefore, the *Auto Setup* box is checked per default and *Internal* selected as *Synchronization Input* Source (see Figure 4-24).

F	System Settings	Sync Setup			
	Measurement Setup	Auto setup			Internal: Locked
	Header Data	DEWE2-A4			
	Advanced Setup	LocalNode			
	Hardware				
	Sync Setup				
	DAQ Hardware	SYNCIN SYNC	NUT		
	Extensions and Plugins	Internal TRION (SY	IC 00T)		
	Remote Control				
1	User Interface				
	UI Options				
	Localization				
٦	System Actions	SYNCHRONISATION INPUT		SYNCHRONISATION OUTPUT	
	Shutdown			TRION (SYNC OUT)	
- 11		(Internal)	() TRION (SYNCI/O)		

Figure 4-24: Sync Setup - Internal Sync Clock selected

The Sync indicator in the upper right corner of the menu will be grey if the Internal clock is used for Synchronization.

4.4.2 TRION-SYNC-BUS

In addition, each DEWE2/3 system can output the synchronization signal of the 10 MHz of clock and forward it to another DEWE2/3 system. That's what the SYNC I/O connectors on the system are for (see Figure 4-25).

Figure 4-25: SYNC I/O connectors of a DEWE2/3 system

One socket being a synchronization OUT, whilst the other one could either be used as synchronization IN or OUT. The synchronization signal forwarding is activated per default (TRION (SYNC OUT) is activated in the *Synchronization Output* menu; see Figure 4-24) and cannot be deactivated.

To clock another DEWE2/3 system with this forwarded synchronization signal, the following Sync Settings must be applied to the DEWE2/3 system that shall receive the synchronization signal: Uncheck the *Auto Setup* box and set the *Synchronization Input* source to *TRION (SYNC I/O)* (see Figure 4-26).

ø	System Settings	Sync Setup		
-	Measurement Setup	Auto setup		Setup: No synchronisation source detected
	Header Data	DEWE2-A4		
9	Advanced Setup	tocalitode		
	Hardware			
۶	Sync Setup			
•	DAQ Hardware	SYNC IN SYNC	CUT	
	Extensions and Plugins	TRION (SYNC 1/0) TRION (SY	NC 0U7)	
	Remote Control			
ĥ	User Interface			
	UI Options			
3	Localization			
	System Actions	SYNCHRONISATION INPUT		SYNCHRONISATION OUTPUT
	Shutdown			TRION (SYNC OUT)
		Internal	TRION (SYNC I/O)	

Figure 4-26: Sync Setup - TRION-SYNC-BUS selected

The Sync indicator in the upper right corner of the menu will be

- Red, if no valid synchronization signal is connected to the SYNC I/O connector
- Orange, if a valid synchronization signal is connected to the SYNC I/O connector but the system is not locked yet (this might take some seconds and will be locked automatically)
- Green, if a valid synchronization signal is connected to the SYNC I/O connector and the system is locked.

The Sync indicator is available in the Action bar as well if the Sync Setup is closed (see (18) in Figure 2-1).

The LED indication of the SYNC OUT and SYNC I/O connector have the following meaning:

	SYNC OUT	SYNC I/O
RED (stable)	Clock detected	Clock detected / Receiving clock
GREEN (stable) Acquisition running		Acquisition running

Table 4-1: LED indication of the <i>SYNC OUT</i> and <i>SYNC I/O</i> conne	ctor
--	------

Depending on the usage of the SYNC I/O (input or output) the LED indicates if the system clock is available or received correctly from another system. The green LED indicates that the acquisition is running. If the acquisition stops the LED will be off.

Depending on the TRION[™] board which is mounted to the First (Star) slot of the system, different synchronization signals can be applied to the system.

4.4.3 APPLYING AN EXTERNAL SYNCHRONIZATION SIGNAL TO THE DEWE2/3 SYSTEM

Depending on the TRION[™] board which is mounted to the First (Star) slot of the system, different external synchronization signals can be applied to the system.

The following Table 4-2 provides an overview about the supported external synchronization sources and proper TRION[™] modules:

	IRIG	IRIG	IRIG	GPS	PTP /	PPS	PPS
	A DC	B DC	A/B AC		IEE1588	(Rising edge)	(Falling edge)
TRION TM -BASE	X	✓	X	X	X	✓	X
TRION TM -TIMING	✓	✓	✓	✓	X	✓	\mathbf{X}
TRION TM -TIMING-V3	\checkmark	✓	\checkmark	✓	✓	✓	✓
TRION TM -VGPS-20/-100	✓	✓	✓	✓	X	✓	\mathbf{X}
TRION TM -VGPS-20/-100-V3	\checkmark	✓	\checkmark	✓	✓	\checkmark	✓

Table 4-2: Compatibility of TRION[™] modules and synchronization source

4.4.3.1 Synchronization Possibilities with a TRION[™]-BASE Board

If a TRION[™]-BASE board is mounted to the first system slot (Star slot), the system can be synchronized with an external IRIG-B-DC or a PPS signal (synchronization to the Rising signal edge). To use either IRIG-B-DC or the PPS signal as synchronization signal, connect the signal to the IRIG input of the TRION[™]-BASE board (PPS signal must be input as well via the IRIG connector). Uncheck the *Auto setup* box in the *Sync Setup* and select either *IRIG* or *PPS* in the *Synchronization Input* menu (see Figure 4-27).

2	System Settings	Sync Setup				
	Measurement Setup	Auto setup				IRIG: Waiting
3	Header Data					
L	Hardware	LocalNode				
F	Sync Setup					
	DAQ Hardware	SYNCIN	SINCOUT			
	Extensions and Plugins	iard	THION (LYNC OUT)			
	Remote Control					
•	User Interface					
9	User Interface UI Options					
	User Interface UI Options Localization					
	User Interface Ul Options Localization System Actions	SUNCHBONISATION	INDIT		SYNCHEONISATION OUTPUT	
-	User Interface UI Options Localization System Actions Shutdown	SYNCHRONISATION	INPUT		SYNCHRONISATION OUTPUT	
	User Interface UI Options Localization System Actions Shutdown	SYNCHRONISATION internal	INPUT	O IRIG	SYNCHRONISATION OUTPUT	
	User Interface UI Options Localization System Actions Shuldown	SYNCHRONISATION Strictmat PPS	INPUT	O ING	SYNCHRONISATION OUTPUT	
	User Interface UI Options Localization System Actions Shuldown	SYNCHRONISATION Strict Synchronisation Synchro	INPUT	• ms	SYNCHRONISATION OUTPUT TRICH (SYNC OUT) TRICH (SYNC OUT) Frequency (MD2)	

Figure 4-27: Selecting an external synchronization source using a TRION[™]-BASE board

The Sync indicator in the upper right corner of the menu will be

- Red, if no valid synchronization signal is connected to the SYNC I/O connector
- Orange, if a valid synchronization signal is connected to the SYNC I/O connector but the system is not locked yet (this might take some seconds and will be locked automatically)
- Green, if a valid synchronization signal is connected to the SYNC I/O connector and the system is locked.

The Sync indicator is available in the Action bar as well if the Sync Setup is closed (see (18) in Figure 2-1).

If an external synchronization signal is applied to the system, the signal can be forwarded via the TRION-SYNC-BUS (see section 4.4.2) as well to synchronize other DEWE2/3 chassis.

In addition, the TRIONTM-BASE board has an AUX connector which can output a rectangular (LVTTL) signal to synchronize other devices, i.e. a GigE camera, to the TRIONTM hardware clock. To do so, enable the *Frequency (AUX)* switch in the *Synchronization Output* setup (see Figure 4-28). The *Frequency* can be set from 10 Hz to 10 MHz and the *Start Edge* can be the *Rising* or *Falling* signal edge.

4.4.3.2 Synchronization Possibilities with a TRION[™]-TIMING/VGPS Board

If a TRION[™]-TIMING or TRION[™]-VGPS board is mounted to the first system slot (Star slot), the system can be synchronized with an external IRIG (A-DC, A-AC, B-DC, B-AC) or a PPS signal (synchronization to the Rising signal edge; synchronization to the Falling signal edge only if it is a TRION[™]-TIMING/VGPS-**V3** board).

IRIG:

To use an IRIG signal as synchronization signal, connect the signal to the IRIG input of the TRIONTM board. Uncheck the *Auto setup* box in the *Sync Setup* and select *IRIG* in the *Synchronization Input* menu (see Figure 4-30). Go to the *IrigCode* dropdown menu and select the correct IRIG Code (see Figure 4-29).

٥	System Settings	Sync Setup				
à	Measurement Setup	Auto setup				IRIG: Waiting 🚾
	Header Data	DEWE2-A4				
0	Advanced Setup	00000001 LocalNode				
3.	Hardware					
۶	Sync Setup					
►	DAQ Hardware	SYNC IN	SYNC OUT			
-	Extensions and Plugins	1816	TRION (SYNC OUT)			
-	Remote Control					
m.	User Interface					
	UI Options					
1	Localization					
	System Actions	SYNCHRONISATION IN	IPUT		SYNCHRONISATION OUTPUT	
	Shutdown				TRION (SYNC OUT)	
		Internal	TRION (SYNC I/O)	GPS	Engrancy (AUV)	
		O PTP	IRIG	O PPS	Property (NOA)	
		CorrLimit	0.01	ms,		

Figure 4-29: Sync Settings for an IRIG synchronization

PPS:

To use a PPS signal as synchronization signal, connect the signal to the IRIG input of the TRIONTM board (PPS signal must be input as well via the IRIG connector). Uncheck the *Auto setup* box in the *Sync Setup* and select *PPS* in the *Synchronization Input* menu (see Figure 4-30). If the system shall be synchronized to the *Rising* signal edge, go to the *InvertedInput* dropdown menu and select *False*. If the system shall be synchronized to the *Falling* signal edge, go to the *InvertedInput* dropdown menu and select *True*.

Remark: Only TRION[™]-TIMING/VGPS-**V3** boards support PPS synchronization to the Falling signal edge!

\$	System Settings	Sync Setup		
	Measurement Setup	Auto setup		PPS: Waiting 🥯
	Header Data	DEWE2-A4		
	Advanced Setup	LocalNode		
8	Hardware			
۶	Sync Setup			
	DAQ Hardware	SYNC IN SY	NC OUT	
-	Extensions and Plugins	PPS TRION	(SYNC OUT)	
-	Remote Control			
- m	User Interface			
	UI Options			
î	Localization			
	System Actions	CONCURONICATION INPUT		
	Shutdown	STNCHRONISATION INPOT		STRUKRONISATION OUTPOT
			TRION (SYNC I/O) GPS	TRION (SYNC OUT)
		O PTP	IRIG PPS	Frequency (AUX)
		CorrLimit	0.01 ms,	
		InvertedInput	False _#	

Figure 4-30: Sync Settings for a PPS synchronization

GPS:

To use a GPS signal as synchronization signal, connect the signal to the GPS input of the TRIONTM board. Uncheck the Auto setup box in the Sync Setup and select GPS in the Synchronization Input menu (see Figure 4-31).

٠	System Settings	Sync Setup	
\$ 1 1 1 1 1 1 1 1 1 1 1 1 1	Hessurement Selup Hesser Data Advanced Selup Hardware Sync Shelp DAQ Hardware Extensions and Plagins Remote Control	Ada setup DEVE2.A4 Decession Locations Sinc.m Sinc.co/T Git Temp Sinc.co/T	6PS. Nading 🕞
	User Interface UI Options Localization		
	System Actions	SYNCHRONISATION INPUT	SYNCHRONISATION OUTPUT
	Shutdown	Internal TRON (SNIC VO) GPS PTP BIG PPS Corrtinut 0.01	TRION (SYNC GUT) TRION (SYNC GUT) Trequency (UX) inc

Figure 4-31: Sync Settings for a GPS synchronization

PTP/IEE 1588 (Only TRION[™]-TIMING/VGPS-V3 boards support PTP synchronization): To use a PTP signal as synchronization signal, connect the signal to the PTP input of the TRION[™] board. Uncheck the Auto setup box in the Sync Setup and select PTP in the Synchronization Input menu (see Figure 4-32).

٠	System Settings	Sync Setup			
	Hessurement Selup Header Data Advanced Selup Data Bage Selup Data Herdmane Extensions and Plagios Remote Control User Interface User Interface Localization	Addu setup DECE 2.44 Localitorie SPUC NU PT SPUC NU SPUC NU	ττ.	Waiting 💼	
- 1	System Actions	SYNCHRONISATION INPUT		SYNCHRONISATION OUTPUT	
	Shutdown	Internal TRK	ON (SYNC I/O) GPS	TRION (SYNC OUT) Trequency (AUX)	
		• PTP	O PPS	IRIG	
		CorrLimit DelayMechanism Protocol	0.01 ms, End To End & UDP_IPv4 &		

Figure 4-32: Sync Settings for a PTP synchronization

The Sync indicator in the upper right corner of the menu will be

- Red, if no valid synchronization signal is connected to the SYNC I/O connector
- Orange, if a valid synchronization signal is connected to the SYNC I/O connector but the system is not locked yet (this might take some seconds and will be locked automatically)
- Green, if a valid synchronization signal is connected to the SYNC I/O connector and the system is locked.

The Sync indicator is available in the Action bar as well if the Sync Setup is closed (see (18) in Figure 2-1).

If an external synchronization signal is applied to the system, the signal can be forwarded via the TRION-SYNC-BUS (see section 4.4.2) as well to synchronize other DEWE2/3 chassis.

■ IRIG-B-DC Output (Only TRIONTM-TIMING/VGPS-V3 boards support the IRIG-OUT option) If the Synchronization Input source is set to the Internal 10 MHz time base, GPS or PTP, the TRIONTM board can be used as an IRIG generator and provide an IRIG-B-DC signal on the IRIG connector. To generate an IRIG-B-DC signal, go to the Synchronization Output menu and enable the IRIG switch (see Figure 4-33). Other signals than IRIG-B-DC cannot be generated!

-	System Settings	Sync Setup				
	Sphere Settings Macarenet Setup Macarenet Setup Machaered Advanced Setup Machaere Del Storkeare Edensional Plageis Remarked Control Ul Options Setup:Setup Setup Setup:Setup Setup Setup:Setup Setup Setup:Setup Setup S	Sync Selap Ado setup DEWE2-A Lastitude Sinc IN Dewe	5%C QUT 1996 (MK 60) 188			internat Locked
	System Actions	SYNCHRONISATION I	NPUT		SYNCHRONISATION OUTPUT	
	Shutdown	Internal	TRON (SYNC I/O)	O GPS	TRION (SYNC OUT)	
		O PTP		O PPS	Frequency (AUX)	
					kigCode CodeB_DC	

Figure 4-33: IRIG-B-DC OUT settings

In addition, the TRIONTM-TIMING/VGPS boards have an AUX connector which can output a rectangular (LVTTL) signal to synchronize other devices, i.e. a GigE camera, to the TRIONTM hardware clock. To do so, enable the *Frequency (AUX)* switch in the *Synchronization Output* setup (see Figure 4-28). The *Frequency* can be set from 10 Hz to 10 MHz and the *Start Edge* can be the *Rising* or *Falling* signal edge.

SYNCHRONISATION OU	ТРИТ						
TRION (SYNC OUT)							
Frequency (AUX)							
Frequency	100	Hz					
StartEdge	Rising						

Figure 4-34: Providing a LVTTL signal via the AUX connector of the TRION[™]- TIMING/VGPS board

4.4.4 GENERAL REMARKS ON PPS AND IRIG SYNCHRONIZATION

- PPS is the abbreviation for Pulse Per Second. PPS signals provide one pulse per second whose Rising or Falling Edge is used for data synchronization.
- PPS signals are usually provided by GPS receivers or IMUs, i.e. GeneSys ADMA's or OxTS RT's
- PPS signals may look like the following (see Figure 4-35)

Figure 4-35: PPS signal provided by an ADMA (blue) and an RT (red)

- The IRIG timecode is used to control a PLL, which is then used as the system time base.
- The IRIG connector also has an indication LED flashing either green or red

• The IRIG LED has the following indication:

	OFF	ON	Description
GREEN (flashing)	20%	80%	SYNC IN not available
RED (flashing) 80% 20% SYNC detected,		SYNC detected, not locked	
GREEN (flashing)	80%	20%	SYNC detected and locked

Table 4-3: IRIG-LED indication

4.5 DAQ HARDWARE

Figure 4-37: System Settings DAQ Hardware – Overview

In the DAQ Hardware setup, the user can enable and disable the usability of different hardware series. For the detailed installing procedure of measurement hardware, please refer to the section 3.

4.6 SENSOR DATABASE

Please note that this is an optional feature and requires a license.

OXYGEN offers the possibility of a sensor database to hold all relevant information about the user's sensors.

Figure 4-38: System Settings Sensors – Overview

The sensor database can be found in the System Settings and provides a comfortable user interface with familiar sub-menus.

To add a new sensor, click on the *Add sensor* button in the lower left corner (marked red in Figure 4-38). The properties of the sensor are the same which are also available in the channel settings (for detailed explanation see section 5.2). By clicking on the properties, a small popup window will appear as seen in Figure 4-39 where the following parameters can be edited:

- *Name*: name of the sensor
- Serial No.: add the serial number of the sensor
- Scaling: add channel scaling or sensitivity; also 2-point and table scaling is available
- Measurement Input Properties (required by the sensor)
 - *Input mode*: define the input mode which is required by the sensor; choose between Voltage, Current, Bridge, Resistance, Potentiometer, Temperature and IEPE
 - *Input Type*: define the input type (depending on the input mode the input type varies)
 - o Input range: define the input range (depending on the input mode the input range varies)
 - o Excitation: choose excitation (off, Voltage, Current) and corresponding value
 - *LP Filter*: add optional lowpass filter, define the frequency, order (2, 4, 6, 8) and type (Bessel or Butterworth)
 - Coupling: choose coupling mode
 - And Bride-Input Specific Settings

Sensors				
Search		<<		
Name	Serial No. Scaling	Input mode		
My Sensor 1	12345678 Scale: 1 Unit: A Offset: 0	Current		-100 m100 mA
My Sensor 2	Channel Scaling		Single-ended	-10 V 10 V
	Scaling 2-point Table			
	Scaling Sensitivity			
	Unit A			
	Sensitivity 1 mA/A			
	Offset 0 A			
	Cancel Ok			

Figure 4-39: Sensor database – popup window to change channel scaling

To duplicate or remove a sensor simply click on the respective sensor and on the *Duplicate* or *Remove* button as marked red in Figure 4-38.

By clicking on *+ Advanced* (see Figure 4-40) in the parameter bar the advanced menu will open, and more properties can be added:

- Bridge resistance
- Bridge Sensor Offset
- Bridge Shunt Target
- Shunt Resistance
- RTD Sensor Type

Figure 4-40: Sensor database – open advanced menu

To apply a sensor to a channel, proceed with the following steps:

- Enter the channel settings by clicking on the little gear of the individual channel in the channel list (pushbutton (1) in Figure 5-2 or Table 5-1, for details see section 5.2.2).
- Click on the *Choose sensor* button in the upper right corner, seen in Figure 4-41.

	Choose sensor	« » X
SENSOR	SCALING	
Scaling	2-point Table	
• Sca	aling Sensitivity	
Unit	V	
Scaling	1 V/V	
Offset	0 V Zero	

Figure 4-41: Applying a sensor to a channel in the channel settings

- A popup window will appear with a list of all defined sensors seen in Figure 4-42.
- Choose the desired sensor and click *Ok*. The search field might ease the search for a specific sensor in the list.

Sensors				
Search				
Name	Serial No.		Scaling	
My Sensor 1	12345678	Scale: 1 Offset: 0		Unit: mA
My Sensor 2	123456789	Scale: 50 Offset: 0		Unit: A
	Cancel		Ok	

Figure 4-42: Popup window to apply a sensor for a channel in the channel settings

- The parameters of the sensor will be applied on the channel. This can be recognized by the name of the sensor, which will be displayed in the channel settings and in the channel, list seen in Figure 4-43.
- To remove an applied sensor from a channel simply click on the *X* button next to the sensor name in the channel settings (see Figure 4-43).

	My Sensor 1 (12345678)	_					
SENSOR	2-point Table						
• Sci	aling Sensitivity						
Unit	mA		Al 3/1 Sim	My Sensor 1(12345678)		٥
Scaling	1 mA/mA		AL 2 (2.61			_	
Offset	0 mA, Zero						

Figure 4-43: Name of chosen sensor for the channel seen in the channel list and channel settings

Remarks:

- Only analog sensors are supported in the database (no encoder).
- Whenever the database is changed, the sensors on the assigned channels do not update automatically and must be assigned again.
- An .xml file will be created with the sensor information, which can also be edited externally in a third-party software.

The name of the xml-file is *sensor_db.xml* and can be found in the following directory: %PUBLIC%\Documents\Dewetron\Oxygen.

4.7 REMOTE CONTROL

4.7.1 SCPI OVER ETHERNET

Remote Control
Enable remote control
ACTIVE PROTOCOLS
SCPI over Ethernet
Simple Command Protocol Interface via TCP
Vendor: Dewetron
Version: 1.9

Figure 4-44: *Remote Control* – SCPI over Ethernet menu

OXYGEN can be controlled by remote via SCPI. To do so, the *Enable remote control* button (see Figure 4-44) must be switched on and *SCPI over Ethernet* must be enabled.

For detailed instructions and programming examples, please refer to the manual *OXYGEN Remote Control-SCPI Version Vx.x* which is available on the DEWETRON CCC-portal (<u>https://ccc.dewetron.com/</u>).

For additional information about typical performance and other basic points, please refer to Table 4-4.

4.7.2 XCP OVER ETHERNET

Please note that this is an optional feature and requires a license.

OXYGEN can be controlled via XCP over Ethernet. To do so, the *Enable remote control* button (see Figure 4-44) must be switched on and *XCP over Ethernet* (see Figure 4-45) must be enabled.

Remote Control
Enable remote control
ACTIVE PROTOCOLS
SCPI over Ethernet
Simple Command Protocol Interface via TCP
Vendor: Dewetron
Version: 1.9
XCP over Ethernet
XCP slave protocol interface via TCP/UDP
Vendor: Dewetron
Version: 1.5

Figure 4-45: Remote Control – XCP over Ethernet menu

Within OXYGEN, the following XCP settings can be edited:

Figure 4-46: Configuration for XCP over Ethernet

- Communication Type: *TCP server* or *UPD server*
- IP address of the OXYGEN device
- Port Number
- Output format: Double (64bit) or Float (32bit)
- A2L File Path: The path the a2l-file is stored to. An a2l-file is automatically generated when XCP remote control is enabled and when OXYGEN is started
- XML File Path: The path the xml-file is stored to. A xml-file is automatically generated when XCP remote control is enabled and when OXYGEN is started

Remark: Please be aware that the directory *C:/Temp* the a2l-file and the xml-file is stored to is not created automatically. Please create the directory *C:/Temp* manually or change the path to an existing directory!

A user instruction to setup a remote control via CANape can be found in the document *DEWETRON_Oxygen_XCP_User_Instructions_Vx.x* which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

For additional information about typical performance and other basic points, please refer to Table 4-4.

4.7.3 USAGE SCPI AND XCP SIMULTANEOUSLY

It is possible to use the SCPI and the XCP plugin both simultaneously. Just enable both plugins and follow the instructions for SCPI from section 4.7.1 and the instructions for XCP in section 4.7.2. As stated above, detailed and latest user manuals for both plugins are available on the DEWETRON CCC-portal:

For detailed SPCI instructions and programming examples, please refer to the manual OXYGEN Remote Control-SCPI Version Vx.x which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

A user instruction to setup a remote control via CANape can be found in the document *DEWETRON_Oxygen_XCP_User_Instructions_Vx.x* which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

4.7.4 REMOTE CONTROL INDICATOR

If remote control is enabled, the *Lock Screen* button will change to a *Remote Control* indicator and marks if OXYGEN is controlled by remote (see Figure 4-47).

4.8 STREAMING INTERFACES

4.8.1 ETHERCAT SLAVE

Please note that this is an optional feature and requires a license.

Using the EtherCAT slave subsystem, an Oxygen system is able to provide timestamped periodic measurement values to an EtherCAT master. The most important control features as well as some status information are provided as well.

Oxygen EtherCAT functionality currently only supports TRION-ETHERCAT boards.

For detailed instructions, please refer to the manual *Oxygen EtherCAT Slave Vx.x.* which is available on the DEWETRON CCC-portal (<u>https://ccc.dewetron.com/</u>).

For additional information about typical performance and other basic points, please refer to Table 4-4.

4.8.2 DATA STREAM PLUGIN

Please note that this is an optional feature and requires a license.

The OXYGEN Data Stream plugin provides the following features:

- High Speed data access
- Efficient raw data transfer
- Multi data stream support
- Multi network port support
- Configurable via SCPI

Figure 4-48: Data Stream Plugin – Overview

For detailed instructions and programming examples, please refer to the manual *Oxygen DataStream Plugin Vx.x* which is available on the DEWETRON CCC-portal (<u>https://ccc.dewetron.com/</u>).

For additional information about typical performance and other basic points, please refer to Table 4-4.

4.9 REMOTE CONTROL AND DATA TRANSFER INTERFACES – SUMMARY

The following Table 4-4 provides an overview and comparison about the licensing, typical performance and other additional information of the different remote control and data transfer interfaces

Interface	Included in	Interface	Typ. application	Typ. Performance				
Option	UXIGEN							
SCPI	Yes	Standard Ethernet	Fetching of actual values,	~ 50 S/s with 50 Channels: Up to 10 kS/s				
		Lucinet	control	with 10 channels (buffered reading "ELOG")				
XCP Slave	Plugin required	Standard Ethernet	Stream of measurement values, basic recoding control; Only compatible with CANape yet; INCA compatibility is in progress	~ 10 kS/s with 8 Channels				
EtherCAT	License required	TRION- EtherCAT	EtherCAT testbed environment; Provide measurement values on the EtherCAT bus with PDO mechanism	~400 S/s with 100 Channels				
Data Stream	License required	Standard Ethernet	Live processing of raw and full speed data in 3rd Party Application; Uses native TCP/IP sockets for data transfer; Multiple streams can be created	~ 100 kS/s with 350 channels or ~ 2 MS/s with 12 channels				
Typical I/O Delay	Typical I/O Delay is 100-200ms within all interface options							

Table 4-4: Remote Control and Data Transfer - Overview

4.10 UI OPTIONS

Figure 4-49: System Settings UI Options – Overview

In the UI Options, the user can change different settings of the UIs' appearance:

- UI mode will change the size of the icons and adjust it for different PC types
- *Style* will change the menu style
- *Color Scheme* will change the color scheme of the software. A light and a dark mode are available.
- Show touch keyboard regulates the appearance of a touch keyboard
- Text size changes the text size in OXYGEN

- Sidebar position: If Left side is selected, the sidebars will swap and the Reset button will set the menu order to the default order if changes have been made. For customizing the menu order, please refer to section 2.6.
- Channel setup: Edit highlighted row only: When this option is selected and the user selects a channel in the Channel Setup, the selected channel will only be highlighted when the user clicks on the channel name and a second click for changing the channel name is necessary. When this option is NOT selected, the user will be able to change the channel name by a single click on the channel name.

4.11 LOCALIZATION

ž	System Settings	Localization
	Measurement Setup	Language
	Header Data	en - (English International)
9	Advanced Setup	Time settings
1	Hardware	
F	Sync Setup	hh:mm:ss 11:35:11 (UTC+2
	DAQ Hardware	Temperature unit
	Extensions and Plugins	°C
-	Remote Control	
U I	User Interface	
	UI Options	
	Localization	

Figure 4-50: System Settings Localization – Overview

In the *Localization* menu, the user can change the software language, set the software time to UTC time as well as change the time format and swap between the temperature units Celsius and Fahrenheit.

Remark: In OXYGEN 3.4, the user can opt for German, English, French, Polish and Chinese.

4.12 SHUTDOWN

Figure 4-51: System Settings Shutdown – Overview

In the *Shutdown* menu, the user can terminate OXYGEN and return to the operating system or shut down the whole system.

5 DATA CHANNELS MENU

5.1 OVERVIEW

In the *Data Channels* menu, the user can manage its input channels and manipulate the hardware settings of the hardware modules.

Figure 5-1: Data Channels Menu - Quick view

A single click on the *Data Channels* menu button will open the quick view where the user can see the activated hardware channels (see Figure 5-1). Expanding the menu to the full screen by keeping the button pressed and moving the mouse to the opposite side of the screen will open the full data channel menu that can be seen in Figure 5-2. The full channel list and the connected hardware with the individual settings can be checked and manipulated here. The functionality of the individual buttons will be explained in the following section.

Figure 5-2: Complete Data Channels menu

1	Hardware	Quick overview of your connected TRION TM -Cards and available channels. Click on a
	Overview	certain channel or whole TRION TM -Card and the respective channel(s) will be
		highlighted in the list
2	Channel	Filters the displayed channels according to their channel type (All, Analog, Digital,
	Filter	Counter, EPAD, Math, Video, Power, CAN)
3	Search	Search a channel according to its name
	Filter	
4	Clear	Clear active Channel and Search Filters
	Filters	
5	Channel	Sort the Channel list according to the connected TRION TM -Cards or in an alphabetical
	Grouping	order
6	Select	Select several channels in the list, i.e. for setting them active or inactive simultaneously
	button	
7	Active	Set a channel active or inactive; An active channel can be displayed in an instrument,
	button	used in a math channel and can be recorded, an inactive channel not
8	Stored	Select whether channel data shall be stored or not when a measurement is running
	button	
9	Channel	Individual channel name; Can be changed individually; for additional information
	Name	please refer to section 4.10
10	Color	Color scheme of the channel can be changed here
11	Setup	Enter the input channel setup (All channel dependent settings can be changed here)
12	Scaled	Preview of the input signal
	Value	
13	Mode	Change the mode of the input channel here
14	Sample	Change the sample rate here; Remark: The sample rate can only be changed for a
	Rate	complete card, not for single channels
15	Range	Change the input range of the channel here
16	Scaling	Change the channel scaling here
17	Physical	Physical unit of the channel, can be changed in the channel setup
	unit	
18	Advanced	Expand the channel dependent advanced Options: Excitation, LP Filter, Coupling, Input
	Options	Type, Sample Format, Sensor Offset, Baud rate, Counter_Filter, Inverted_A,
		ListenOnly, Source_A, Termination, Threshold
19	Hide	Hide the channels of a complete card
	button	
20	Toggle	Toggle between the Channel List and the previously opened menu
	button	
21	Add button	Add a Formula, Statistics, Filter, FFT, Rosette, Power Group or Ethernet Receiver
22	Delete	Delete the Formula, Statistics, Filter, FFT, Rosette, Power Group or Ethernet Receiver
	button	that is currently selected
23	Delete	Delete selected PowerGroup
	PowerGroup	

Table 5-1: Push buttons in the Channel Menu – Overview

5.2 CHANGING THE CHANNEL SETTINGS

It is either possible to change the channel settings in the *Data Channels* menu or in the individual channel setup that can be accessed via pushbutton (12) (see Table 5-1).

5.2.1 CHANGING THE CHANNEL SETTINGS IN THE DATA CHANNEL MENU

To change the individual channel settings in the *Data Channels* menu that can be seen in Figure 5-2 just click on the desired parameter with the left mouse button and a popup window will appear. If a parameter can be changed or not depends on the channel type (i.e. it's not possible to change the range of a digital channel) and the selection of the parameters depends on the TRIONTM-Card (i.e. different Input Modes). For illustration, the following figures will show the different options that are available with a TRIONTM-1620-ACC card.

• Changing the channel color:

Figure 5-3: Popup window for changing the channel color

Changing the input mode:

3	Voltage	
3	Voltage	
3	IEPE	
6	Current	

Figure 5-4: Popup window for changing the input mode

• Changing the sample rate (can only be changed for the whole card and not for single channels):

_	
10000	Hz
10000	
5000	
2000	
1000	
500	
200	0000 H2 -

Figure 5-5: Popup window for changing the sample rate

• Changing the input range:

Figure 5-6: Popup window for changing the input range

• Changing the channel scaling and physical unit:

Channe Scaling	Scaling 2-point Table
Unit	V
Scaling	1 V/V
Offset	0 V Zero
	Cancel Ok

Figure 5-7: Popup window for changing the scaling and physical unit

Zeroing an input channel: After selecting the desired channel in the list the Zero pushbutton will appear at the lower end of the Data Channels menu:

-0.040273	AVG	Voltage	10000
-10	10	voitage	10000
0.000562	AVG	Voltage	10000
-10	10	voltage	10000
-2.016000	AVG	Voltage	10000
-10	10	* Otto BC	10000
-6.803200	AVG	Voltage	10000
-10	10	voltage	10000
-1.196800	AVG	Voltage	10000
-10	10	voltage	10000
5.007999	AVG		
		Zero	

Figure 5-8: Zeroing an input channel

• Changing the sensitivity (also available in the Channel Scaling popup window):

Channel Scaling	
Scaling 2-point	Table
Scaling) Sensitivity
Unit V	
Sensitivity 1	V/V
Offset 0	V Zero
Cancel	Ok

Figure 5-9: Popup window for changing the sensitivity

• Changing the 2-point-scaling (also available in the Channel Scaling popup window):

Channel Scalin Scaling 2-po	g int Table		
Unit V			
P1: 0	V P2:	1	V,
AVG	AC RMS	AVG A	C RMS
0	V,	1	٧.
Ca	ncel	Ok	

Figure 5-10: Popup window for changing the 2-point-scaling

• Applying table scaling (also available in the Channel Scaling popup window):

Channel Scaling	
Scaling 2-point Ta	ble
Unit V	Copy Paste
x [v]	Y [V] +
AVG	AC RMS
Cancel	Ok

Figure 5-11: Popup window for applying table scaling

• Changing the LP-filter (Expand advanced settings):

	derä	Type Butterworth	00000
LP Filter			
Frequency 1.	. 600000 Hz		
Auto			
Order	Туре		
8	Butt	erworth	A 1
Cano	el	Ok	

Figure 5-12: Popup window for changing the LP-filter

Remark: When the sample rate is changed an appropriate filter will be selected automatically (Automode).

• Changing the coupling mode (Expand advanced settings):

DC	
DC	
0.16	

Figure 5-13: Popup window for changing the coupling mode

Changing the bit rate (Expand advanced settings; can only be changed for the whole card and not for single channels):

Auto	
16 bit	
Auto	

Figure 5-14: Popup window for changing the bit rate

5.2.1.1 Table Scaling

OXYGEN offers the possibility to apply non-linear scaling in form of a table for non-linear sensors. This can be done in the data channel menu but also in the channel settings of an individual channel.

Following options are available:

- The unit can be specified
- Individual points to specify x- and y-values can be added by clicking on the + button (see Figure 5-15)
- A point can be removed by clicking on the button (see Figure 5-16)

Figure 5-15: Table scaling – add point to specify x- and y-value

SENSOR	SCALING				
Scaling	2-point	Table			
Unit		_		Сору	Paste
	X [V]			Y [V]	+
0			1		-
1			3		_
	AVG				AC RMS

Figure 5-16: Table scaling – delete point

- By clicking the *AVG* or the *AC RMS* button, a direct measurement point at the current instant of time can be added to the table.
- A table can also be copied from another source, e.g. Excel and pasted with **CTRL+V** or the *Paste* button into the table scaling menu. Likewise, the table can be copied using **CTRL+C** or the *Copy* button and pasted into e.g. Excel (see Figure 5-17).

Figure 5-17: Table scaling – copy and paste table from Excel into OXYGEN

• To copy and paste a whole table from one channel to another the *Copy* button in channel 1 can be used. After entering the channel settings of channel 2, the *Paste* button can simply be clicked on, and the table will also be applied here.

Remarks:

- For a valid scaling, at least two points have to be added, otherwise an error message will appear.
- If duplicate x-values exist in the table, an error message will appear.
- If a value is out of the defined table range the channel output will return NaN.
- Linear interpolation is applied between the table points.
- The x-values do not necessarily have to be entered from lowest to highest value, since the table will be sorted when leaving and entering the menu again.
- Like it will also be noted in section 5.10, the whole channel settings, including the table scaling, can be copied and pasted between different channels using **CTRL+C** and **CTRL +V**.

5.2.2 CHANGING THE CHANNEL SETTINGS IN THE CHANNEL SETUP

All channel settings (except the sample rate and the bit rate) can also be changed in the individual Channel Setup (see Figure 5-18) which can be accessed via pushbutton (11) (see Figure 5-2 or Table 5-1).

Figure 5-18: Channel Setup of a TRION[™]-1620-ACC channel

The main advantage compared to the parameter manipulation in the *Data channels* menu is that a wide preview window is available. With that, the user can see the affection of different parameter changes (i.e. range and scaling) on the input signal in real time. To swap between the channel setups of different channels use the arrows (<< >>) in the upper right corner and to close the channel setup use the *X* next to the arrows.

5.3 CREATION OF MATHEMATICAL CHANNELS

OXYGEN enables the user to easily create Formula (see section 5.3.1), Statistics (see section 5.3.3), Filters (see section 5.3.5), FFT (see section 5.3.6) or (Strain gauge) Rosette channels (see section 5.3.7) which are calculated in real time. For details about the Psophometer calculation, please refer to section 13. The Swept sine Analysis calculation is explained in section 5.3.9.

To create a new channel, the user needs to click on the *Add* button in the lower left corner (marked red in Figure 5-19) and a popup window will appear where the user can select if he wants to create a Formula, Statistics, Filter channel, a FFT or Rosette calculation. If a Statistics or Filtering channel or a FFT or Rosette calculation shall be created, the user must select the desired input channel(s) in the *Channel List* before clicking on the *Add* button. The created channels will show up in the *Math* channel section in the *Data Channels* menu.

*	Add Channel - Formula		+			
141	Create a new formula channel					
-	Catcourse Control of C					
	Formula Add Channel - Statistics					
-	- Statistics					
0	Calculations	AVG MAX MIN RMS ACRM	5			
~	Formula					
E	FFT					
134	Rosette	sdowske 1				
1	Fibers					
7 1	All Power FFT Grav	up name_Statistics 1				
	Power Group Rosette	Add Channel Elliner				
		PRO COMORE - FINETS		· •		
	Cata Sources Power	Calculations		2		
	Ethernet Escalver Power Group	Secondaria Contraction	High pass O Differentiator O Integrator			
		Portional Sector		4		
\odot	Data Sources	Statistics Filter frequency 2500	D Hg	× .		
<u> </u>	Ethernet Receiver	Filters Filter characteristic Bess	sel "Order 4			
		FFT	A			
		Group name Filte	es 1			
		Add Channel - FFT				
		Proper			1	
		Reven Gerren Calculations	Data size	Samples		
		Fermula	Window type Hanning (-30d8)			
		Data Sources	Overlag 50			
		Ethannal Receiver			· · · · · · · · · · · · · · · · · · ·	
		Filters	Amplitude spectrum Amplitude			
	V TRION-2400-dST	101			1	
	- M2/15	Bustle	Group name FFT Channels			
	Al 3/2 Silv	Power	Add Charmel - Rosette			1
	Al 3/3 Sim	Power Group				
	A/33 TRON-040-45TG-9-US		Calculations	Rosette type Angle reference		
	Al 3/4 SHIT	Data Sources	Formula	0 0 0 0	0.5	
	🗖 👩 Al 3/5 Sim 👩	Ethernet Receiver	in the second			
			Statistics			
	A 13/8 TRON-2800-4576-6-08		Filters	Poisson ratio Toung modulus	10.	
	Al 3/7 Sim		FFT			
	Al 3/8 Sim	ab 0.000000 AVG	Bourte			
	A 39 TRON-0400-4510-9-08	-12 - 20				
	TRION-2402-MULTI-4-D		Power			
	Al 4/1 Sim	0.038276 AVG	Power Group			
	Al 4/2 Sim	45 0.009977 AVG				
	A 42 TRON-040-MU(1)+0	· · · · · · · · · · · · · · · · · · ·	Data Sources			
		4 1380/99 AVG	Ethernet Roceiver			
	Al 4/4 Sim	45 2.803839 AVG				
	A 44 TRON-245-MUDI+D					
	CAN 43 THOM-385-MU(T)-5-0	SP used as analog				
	Video Channels					
	HP HD Webcam (Fixed)	*	30 fps			and the second se
	HP ND Websam [Files] USB Carrers		and the second sec			
	Clerkik, g Narager USB Carera	•	30 fps			
	-					
	+ - 🔆				Cancel Add	
					Cancer Add	

Figure 5-19: Creation of a math channel

Remark: The *Calculation Setup* stores the information if a Formula, a Statistics or a Filtering channel was created lastly and selects the respective one automatically when the window is opened the next time

5.3.1 CREATION OF A FORMULA CHANNEL

For creating a Formula math channel, the user must click on the *Add* button in the lower left corner (marked red in Figure 5-19) and select *Formula* (see Figure 5-20).

Calculations	Create a new formula channel.	
Formula		
Statistics		
ilters		
FT		
losette		
ower		
Power Group		
ata Sources		
Ethernet Receiver		
	Cancel Add	
Ci	ure 5.20. Benun window for creating a Formula channel	
FI	uie 5-20. Fopup window for creating a formula champer	

Figure 5-21: Formula Channel Setup – Overview

1	Active	Setting a channel active or inactive; An active channel can be displayed in an instrument,
	button	used in a math channel and can be recorded, an inactive channel not
2	Stored	Select whether channel data shall be stored or not when a measurement is running
	button	
3	Color	Color scheme of the channel can be changed here
4	Channel	Individual channel name; Can be changed individually
	Name	
5	Physical	Physical unit of the channel, can be changed in the channel setup
	unit	
6	Command	Type your desired formula here
	line	
7	Add Button	Adds the individual channel to the command line; Channels can be added to the
		command line by drag and drop, too
8	Functions	Available mathematical and logical functions can be selected here. By clicking on >>,
		the user can swap between Standard, Trigonometric, Logic and Miscellaneous functions.
		For a description and the correct syntax of the individual functions, please refer to
		section 5.3.2.
9	Keys and	Numerical pad and mathematical operators; Can also be entered via the keyboard.
	Operators	
10	Preview	Real Time preview of the calculation
	window	

Table 5-2: Pushbuttons in the Formula Channel Setup – Overview

Remark: It is possible to assign channels with different sample rates to one formula channel. The sample rate of the formula channel will be set to the highest input channel sample rate. The samples of channels with lower sample rates will not be interpolated, but the last value will be repeated according to the fastest sample rate until the channel is updated.

5.3.2 DESCRIPTION OF THE MATHEMATICAL AND LOGICAL FUNCTIONS

Function	Description	Syntax
e	Euler's number	e
π	Constant Pi	pi
min	Minimum of two values	min(x,y)
max	Maximum of two values	max(x,y)
abs	Absolute value	abs(value)
x^y	Exponential function with arbitrary basis	pow(x,y)
e^	Exponential function with basis e	exp(x)
2^	Exponential function with basis 2	exp2(x)
ln	Natural logarithm to basis e	ln(x)
log	Common logarithm to basis 10	log(x)
	Square root	sqrt(x)
3 V	Cube root	cbrt(x)

Table 5-3: Standard mathematical operators - description and syntax

Function	Description	Syntax
sin	Sine	sin(x)
asin	Arc sine	asin(x)
sinh	Hyperbolic sine	sinh(x)
asinh	Arc hyperbolic sine	asinh(x)
cos	Cosine	cos(x)
acos	Arc cosine	acos(x)
cosh	Hyperbolic cosine	cosh(x)
acosh	Arc hyperbolic cosine	acosh(x)
tan	Tangent	tan(x)
atan	Arc tangent	atan(x)
tanh	Hyperbolic tangent	tanh(x)
atanh	Arc hyperbolic tangent	atanh(x)

Table 5-4: Trigonometrical operators - description and syntax

Function	Description	Syntax
<	If 'value1' is less than 'value2', the result is 1.0 else 0.0	value1 < value2
≤	If 'value1' is less than or equals 'value2', the result is 1.0 else 0.0	value1 <= value2
>	If 'value1' is greater than 'value2', the result is 1.0 else 0.0	value1 > value2
2	If 'value 1' is greater than or equals 'value 2', the result is 1.0 else 0.0	value1 >= value2
=	If 'value 1' equals 'value 2', the result is 1.0 else 0.0 (Two NaNs do not compare equal	value1 == value2
¥	If 'value 1' is different than 'value 2', the result is 1.0 else 0.0	value1 != value2
and	Logic and: value1 != 0.0 and value2 != $0.0 \rightarrow 1.0$ value1 = 0.0 and value2 != $0.0 \rightarrow 0.0$ value1 != 0.0 and value2 = $0.0 \rightarrow 0.0$ value1 = 0.0 and value2 = $0.0 \rightarrow 0.0$	value1 and value2
or	Logic or: value1 != 0.0 or value2 != $0.0 \rightarrow 1.0$ value1 = 0.0 or value2 != $0.0 \rightarrow 1.0$ value1 != 0.0 or value2 = $0.0 \rightarrow 1.0$ value1 = 0.0 or value2 = $0.0 \rightarrow 0.0$	value1 or value2
not	Logic negation: If value = 0.0, the result is 1.0, else 0.0	not value
if	If condition is true, the result is 'true_val', otherwise 'false_val'	if(condition,true_val,false_val)
isnan	If value is NaN, result is 1.0, 0.0 otherwise	isnan(value)

Table 5-5: Logical operators - description and syntax

Function	Description	Syntax	
ecnt ¹	Count number of edges on condition; condition is mandatory, rearm and reset parameter optional	ecnt(cond,rearm,reset)	
hold ²	Hold value at trigger condition; value and condition parameters are mandatory, init and rearm optional	hold(value,cond,init,rearm)	
stopwatch ³	Measure the timespan between two conditions in seconds; start and stop condition is both mandatory, reset is optional	stopwatch(start_cond,stop_cond, reset)	
measdiff ⁴	Measure the value difference of one channel between two conditions	measdiff(val,cond1,cond2)	
period ⁵	Measure the period duration in seconds between consecutive conditions with optional rearm condition	Edge(cond,rearm)	
dutycycle ⁶	Measure the dutycycle (from 0 to 1) between consecutive conditions with optional rearm condition	Dutycycle(cond,rearm)	
edge ⁷	Generate positive edge on cond with rearm condition	Edge(cond,rearm)	
rmin ⁸	Measure rolling overall minimum of a channel during a measurement with optional reset condition	rmin(value,reset)	
rmax ⁸	Measure rolling overall maximum of a channel during a measurement with optional reset condition	rmax(value,reset)	
ravg ⁸	Measure rolling overall average of a channel during a measurement with optional reset condition	ravg(value,reset)	
rrms ⁸	Measure rolling overall RMS of a channel during a measurement with optional reset condition	rrms(value,reset)	
rsum ⁸	Measure rolling overall sum of a channel during a measurement with optional reset condition	rsum(value,reset)	
racrms ⁸	Measure rolling overall ACRMS of a channel during a measurement with optional reset condition; Not included in the selection and must be typed manually	racrms(value,reset)	
rp2p ⁸	Measure rolling overall Peak-to-Peak of a channel during a measurement with optional reset condition; Not included in the selection and must be typed manually	Rp2p(value,reset)	
 ¹ For a detailed description of the ecnt-function, please refer to section 5.3.2.1 ² For a detailed description of the hold-function, please refer to section 5.3.2.3 ³ For a detailed description of the stopwatch-function, please refer to section 5.3.2.3 ⁴ For a detailed description of the measdiff-function, please refer to section 5.3.2.4 ⁵ For a detailed description of the period-function, please refer to section 5.3.2.5 ⁶ For a detailed description of the dutycycle-function, please refer to section 5.3.2.6 ⁷ For a detailed description of the edge-function, please refer to section 5.3.2.7 ⁸ For a detailed description of the rolling-overall-functions, please refer to section 0 			

Table 5-6: Measurement functions – description and syntax

Function	Description	Syntax	
time*	Returns the elapsed time since acquisition (re)start	time	
scnt*	Counts the number of samples since acquisition (re)start	scnt	
sr*	Returns the Sample Rate in Hz	sr	
mod	Remainder of division x/y, sign of x	mod(x,y)	
noise	Creates Noise signal in the range [-x+x]	noise(x)	
atan2	Arc tangent of y/x using signs of arguments to determine the correct quadrant	atan2(y,x)	
floor	Rounds x towards minus infinity	floor(x)	
ceil	Rounds x towards plus infinity	ceil(x)	
round	Round to nearest integer	round(x)	
trunc	Round x towards zero	trunc(x)	
* A channel to which the function refers must be specified, i.e. in the following manner: 'Ref_Ch'*0+time			

Table 5-7: Miscellaneous operators - description and syntax

5.3.2.1 Description of the edge-Count function (ecnt)

Syntax: ecnt(cond,rearm,reset)

The Edge-count function counts the number of fulfilled *cond*itions. If desired, a *Rearm* event which must be passed before a *cond*ition can be fulfilled again, can be defined. A *Reset* event can be defined optionally, too. *Cond*ition, *Rearm* and *Reset* can be applied to *Rising* and *Falling* signal edges. *Rising Edges* can be defined by using the logical operators > and ≥. Falling Edges can be defined by using the logical operators < and ≤.

The following examples will explain the functionality (corresponding dmd-file can be found here: https://ccc.dewetron.com/pl/oxygen):

ECNT_Cond = ecnt('SIGNAL'>800):

Every time the channel *SIGNAL* passes *800* with a *Rising Edge (>)*, the channel *ECNT_Cond* increases by 1 (see Figure 5-22).

The reason why the ecnt-function increases by more than 1 in Figure 5-22 is that the signal is floating around the *Cond*ition level several times due to noise. This can be seen in the magnification in Figure 5-22. This is also the reason why the ecnt-function counts on *Falling Edges* as well. To avoid disturbed results caused by signal noise, a *Rearm* Level can be defined. A suitable example can be found in the following section and Figure 5-23.

Figure 5-22: ECNT-function with *Cond*ition only

ECNT_Cond_Rearm = ecnt('SIGNAL'>800,'SIGNAL'<500):</p>

If the channel *SIGNAL* passes *800* with a *Rising Edge (>)*, the channel *ECNT_Cond_Rearm* increases by 1. To avoid unwanted increments caused by noise on the signal, the channel *SIGNAL* must pass *500* with a *Falling Edge (<)* before the channel *ECNT_Cond_Rearm* counts again when the channel *SIGNAL* passes *800* with a *Rising Edge (>)* (see Figure 5-23).

Figure 5-23: ECNT-function with *Cond*ition and *Rearm*

ECNT_Cond_Rearm_Reset = ecnt('SIGNAL'>800,'SIGNAL'<500,'SIGNAL'<-100): If the channel SIGNAL passes 800 with a Rising Edge (>), the channel ECNT_Cond_Rearm_Reset increases by 1. To avoid unwanted increments caused by noise on the signal, the channel SIGNAL must pass 500 with a Falling Edge (<) before the channel ECNT_Cond_Rearm_Reset counts again when the channel SIGNAL passes 800 with a Rising Edge (>). If the Channel SIGNAL passes -100 with a Falling Edge (<), the channel ECNT_Cond_Rearm_Reset is set to 0 (see Figure 5-24).</p>

5.3.2.2 Description of the hold-function (hold)

Syntax: hold(value,cond,init,rearm)

The hold-function requires two input channels. One channel is the *Signal* channel and one channel the *Condition* channel. If the *Condition* channel fulfills a certain *Cond*ition, the actual value of the *Signal* channel is stored to the hold-function channel. If desired, an *Init*ial value and a *Rearm* event which must be passed before a *Cond*ition can be fulfilled again, can be defined. *Cond*ition and *Rearm* can be applied to *Rising* and *Falling* signal edges. *Rising Edges* can be defined by using the logical operators > and ≥. *Falling Edges* can be defined by using the logical operators < and ≤.

The following examples will explain the functionality (corresponding dmd-file can be found here: https://ccc.dewetron.com/pl/oxygen):

HOLD_VAL_COND = hold('SIGNAL_VAL','SIGNAL_COND'>5):

If the channel *SIGNAL_COND* passes 5 with a *Rising Edge (>)*, the actual value of the channel *SIGNAL_VAL* is stored to the channel *HOLD_VAL_COND*. The value of the channel *HOLD_VAL_COND* is *NaN* before reaching the *Cond*ition the first time (see Figure 5-25).

Figure 5-25: HOLD-function with *Cond*ition

HOLD_VAL_COND_INIT = hold('SIGNAL_VAL','SIGNAL_COND'>5,2):

If the channel *SIGNAL_COND* passes 5 with a *Rising Edge (>)*, the actual value of the channel *SIGNAL_VAL* is stored to the channel *HOLD_VAL_COND_INIT*. The *Init*ial value of the channel *HOLD_VAL_COND_INIT* is 2 before reaching the *Cond*ition the first time (see Figure 5-26).

Figure 5-26: HOLD-function with *Cond*ition and *Init*ial value

HOLD_VAL_COND_INIT_REARM = hold('SIGNAL_VAL','SIGNAL_COND'>5,2,'SIGNAL_VAL'>-3): If the channel SIGNAL_COND passes 5 with a Rising Edge (>), the actual value of the channel SIGNAL_VAL is stored to the channel HOLD_VAL_COND_INIT_REARM. The Initial value of the channel HOLD_VAL_COND_INIT_REARM is 2 before reaching the Condition the first time. In addition, the channel SIGNAL_VAL must pass -3 with a Rising Edge (>) before the channel HOLD_VAL_COND_INIT_REARM updates again when the channel SIGNAL_COND passes 5 with a Rising Edge (>) (see Figure 5-27).

Figure 5-27: HOLD-function with *Cond*ition, *Init*ial value and *Rearm* level

5.3.2.3 Description of the stopwatch-function (stopwatch)

Syntax: stopwatch(start_cond,stop_cond, reset)

Figure 5-28: Schematic explanation of the stopwatch function

The stopwatch function returns the timespan in seconds between two conditions (*start_cond* and *stop_cond*). Both conditions may refer to the same channel or to different channels. An optional *reset* condition resets the stopwatch function to *NaN* until the next *start_cond* occurs.

If the *reset* is not specified, the stopwatch-function restarts to count at 0s automatically at every new *start_cond*.

If the *reset* is specified as *O* (i.e. *stopwatch* (*start_cond,stop_cond,O*)), the stopwatch function does not restart to count at Os when a new *start_cond* occurs but continues counting from the last value.

If the reset is specified differently, i.e. as *signal<0*, the stopwatch function is reset if this certain event occurs and continues counting from the last value if a new *start_cond* occurs.

If the *start_cond* appears again before a *stop_cond* is reached, the *start_cond* will be ignored. If *start_cond* is equal to the *stop_cond*, the stopwatch returns 0s.

The following examples will clarify the functionality of the stopwatch function (corresponding dmd-file can be found here: https://ccc.dewetron.com/pl/oxygen):

STOPWATCH_cond1_cond2 = stopwatch('SIGNAL1'>100,'SIGNAL1'>800):

The stopwatch function (dark blue graph in Figure 5-29) will start to measure the time in seconds if the channel *SIGNAL1* (light blue graph in Figure 5-29) exceeds 100 and stop to measure the time in seconds if the channel *SIGNAL1* exceeds 800. If *SIGNAL1* will exceed 100 again, the stopwatch function restarts to measure at 0s.

Figure 5-29: Stopwatch with start and stop condition

STOPWATCH_cond1_cond2_0 = stopwatch('SIGNAL1'>100,'SIGNAL1'>800,0):

The stopwatch function (pink graph in Figure 5-30) will start to measure the time in seconds if the channel *SIGNAL1* (light blue graph in Figure 5-30) exceeds 100 and stop to measure the time in seconds of the channel *SIGNAL1* exceeds 800. If *SIGNAL1* will exceed 100 again, the stopwatch function restarts to measure from the last value and NOT reset.

STOPWATCH_cond1_cond2_reset = stopwatch('SIGNAL1'>100, 'SIGNAL1'>800, 'SIGNAL1'<-100): The stopwatch function (green graph in Figure 5-31) will start to measure the time in seconds if the channel *SIGNAL1* (light blue graph in Figure 5-31) exceeds 100 and stop to measure the time in seconds of the channel *SIGNAL1* exceeds 800. If (and only if) *SIGNAL1* will decreases -100, the stopwatch function will reset to *NaN* and restart to measure from 0s if *SIGNAL1* exceeds 100 again.

Figure 5-31: Stopwatch with start and stop condition, reset specified

5.3.2.4 Description of the measdiff-function (measdiff)

Syntax: measdiff(val,cond1,cond2)

The measdiff function returns the value difference between *cond1* and *cond2* of the signal *val*. The three parameters may refer to same channel or each to a different channel.

The measdiff function will return NaN before cond2 is reached for the first time.
If *cond1* and *cond2* are triggered several times during one measurement, the measdiff function will be updated after *cond2* is reached again.

If *cond1* is reached several times before *cond2* is reached, the measurement will start when *cond1* is reached for the first time and will not be reset if *cond1* is reached again.

The following examples will clarify the functionality of the measdiff function (corresponding dmd-file can be found here: <u>https://ccc.dewetron.com/pl/oxygen</u>):

MEASDIFF_val_cond1_cond2 = measdiff('SIGNAL2', 'SIGNAL1'>100, 'SIGNAL1'>800): The measdiff function (purple graph in Figure 5-32) will measure and return the value difference of SIGNAL2 (green graph in Figure 5-32) triggered by the following conditions: The measurement is initialized when SIGNAL1 (light blue graph in Figure 5-32) exceeds 100 and stopped when SIGNAL1

5.3.2.5 Description of the period-function (period)

Syntax: period(cond,[rearm])

The period function returns the period time of a signal in seconds. The signal to which the function shall be applied to must be specified in the *cond* in combination with the period threshold which is normally zero.

An optional *rearm* level will suppress distortion caused by signal noise. The *rearm* can be applied to the same or to a different signal.

The following examples will clarify the functionality of the period function (corresponding dmd-file can be found here: <u>https://ccc.dewetron.com/pl/oxygen</u>):

PERIOD_cond = period('SIGNAL'>0):

The period function (green graph in Figure 5-33) will measure and return the period time of *SIGNAL* (brown graph in Figure 5-33) for the condition that the *SIGNAL* level is higher than 0. As the *SIGNAL* is a pure sine wave with frequency 0.5 Hz, its period time should be 2 seconds. But due to noise on the signal, the zero-level is crossed several times (see Figure 5-34) and causes a wrong

measurement result when determining the period time. To suppress the influence of noise on the period time determination, a rearm level can be optionally added. This is explained in the next section.

PERIOD_cond_rearm = period('SIGNAL'>0,'SIGNAL'>-5):

The period function (green graph in Figure 5-33) will measure and return the period time of *SIGNAL* for the condition that the *SIGNAL* level is higher than 0. As period time measurements can be disturbed by noise, a rearm level is added in this example to avoid the influence of noise to the signal. The rearm level is set to the following condition: The level of the *SIGNAL* must exceed -5. This means that the *SIGNAL* must exceed -5 before the condition *SIGNAL* >0 is detected again. With this optional rearm level the influence of noise on the period time measurement that can be seen in the green graph of Figure 5-33 is suppressed and the detected period time is always 2s as it can be seen in the blue graph of Figure 5-33.

5.3.2.6 Description of the dutycycle-function (dutycylce)

Syntax: dutycylce(cond,[rearm])

The dutycycle function returns the dutycycle of a signal. The signal to which the function shall be applied to must be specified in the *cond* in combination with the dutycylce threshold.

An optional *rearm* level will suppress distortion caused by signal noise. The *rearm* can be applied to the same or to a different signal.

The following examples will clarify the functionality of the dutycycle function (corresponding dmd-file can be found here: <u>https://ccc.dewetron.com/pl/oxygen</u>):

DUTYCYCLE_cond = dutycycle('SIGNAL'>0):

The dutycylce function (orange graph in Figure 5-35) will measure and return the dutycycle of *SIGNAL* (brown graph in Figure 5-35) for the condition that the *SIGNAL* level is higher than 0. As the *SIGNAL* is a pure sine wave, its duty cycle should be 0.5 (or 50%). But due to noise on the signal, the zero-level is crossed several times (see Figure 5-36) and causes a wrong measurement result when determining the dutycycle. To suppress the influence of noise on the dutycycle determination, a rearm level can be optionally added. This is explained in the next section.

DUTYCYCLE_cond_rearm = dutycycle('SIGNAL'>0,'SIGNAL'>-5):

The dutycylce function (orange graph in Figure 5-35) will measure and return the dutycycle of *SIGNAL* for the condition that the *SIGNAL* level is higher than 0. As dutycycle measurements can be disturbed by noise, a rearm level is added in this example to avoid the influence of noise to the signal. The rearm level is set to the following condition: The level of the *SIGNAL* must exceed -5. This means that the *SIGNAL* must exceed -5 before the condition *SIGNAL* >0 is detected again. With this optional rearm level the influence of noise on the dutycylce measurement that can be seen in the orange graph of Figure 5-36 is suppressed and the detected dutycycle is always 0.5 (50%) as it can be seen in the blue graph of Figure 5-36.

5.3.2.7 Description of the edge-function (Edge)

Syntax: edge(cond,rearm)

The edge function returns a rising egde from 0 to 1 in case the *cond*ition is passed and a falling edge from 1 to 0 if the *rearm* is passed.

The following examples will clarify the functionality of the edge function (corresponding dmd-file can be found here: <u>https://ccc.dewetron.com/pl/oxygen</u>):

EDGE_cond_ream = edge('SIGNAL'>800, 'SIGNAL'<-100):</pre>

The edge function (green graph in Figure 5-37) will return a rising edge from 0 to 1 for the condition that the *SIGNAL* level exceeds 800 (brown graph in Figure 5-37). In case the *SIGNAL* falls below - 100, the edge function will return a falling edge from 1 to 0.

5.3.2.8 Combination of edge function and other formulas

In case a formula that does not contain a rearm level as optional parameter, like the stopwatch function(see section 5.3.2.3) or the measdiff function (see section 5.3.2.4), the edge function (see section 5.3.2.7) can be used to generate this rearm level.

The following example will clarify the functionality by demonstration the combination of the edge and stopwatch function (corresponding dmd-file can be found here: <u>https://ccc.dewetron.com/pl/oxygen</u>):

The blue signal in Figure 5-38 will measure the time using the stopwatch between the following two conditions: *cond1* is true if *SIGNAL1* (green signal in Figure 5-38) exceeds 100. *Cond2* is true if *SIGNAL1* (green signal in Figure 5-38) exceeds 800.

The formula syntax of the blue signal in Figure 5-38is the following:

```
stopwatch('SIGNAL1'>100,'SIGNAL1'>800)
```

Due to noise, *cond1* is passed several times which might be undesired.

To suppress this influence of noise a rearm level of -100 can be added for cond1 by using the edge function. The result can be seen in the orange graph of Figure 5-38. In this example, the stopwatch function is only restarted if *SIGNAL1* falls below -100.

The syntax is the following:

```
stopwatch(edge('SIGNAL1'>100,'SIGNAL1'<-100)>0.5,'SIGNAL1'>800)
```


5.3.2.9 Description of the rolling-overall-functions

rmin(value[,reset]):

Returns the global minimum of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

rmax(value[,reset]):

Returns the global maximum of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

ravg(value[,reset]):

Returns the global arithmetic average of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

rrms(value[,reset]):

Returns the global RMS of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

rsum(value[,reset]):

Returns the global sum of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

racrms(value[,reset]):

Returns the global ACRMS of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

For details about the ACRMS, please refer to section 5.3.4.

rp2p(value[,reset]):

Returns the global peak-to-peak level of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

A corresponding dmd-file can be found here: <u>https://ccc.dewetron.com/pl/oxygen</u>

5.3.3 CREATION OF A STATISTICS CHANNEL

						Cancer	
	1					Cancel	Ac
Ethernet Receiver							
Data Sources							
Power Group							
Power							
Rosette							
FFT	Group name	Statistics 1					
Filters	Window size	1		JL	A		
Statistics							
Formula	AVG	MAX	MIN	RMS	ACRMS		
alculations			17623122	5000 007			

Figure 5-39: Popup window for creating a Statistics channel

After clicking on the *Add* button, the *Calculation Setup* window will appear (see Figure 5-39). For the creation of a Statistics channel, the user must select the desired input channel before clicking on the *Add* button. The user can select several input channels simultaneously to create several statistic channels with the same settings at once. In the *Calculation Setup*, the user can define if the Statistics channel shall calculate the AVG, MAX, MIN, RMS or ACRMS value of the input channel. The user may select several statistical values. An individual channel for each value will be created afterwards. After that a time interval (*Window Size*) for the calculation of the desired value must be defined. Furthermore, the user can define a *Group name* in which several channels can be summarized in the *Data Channels* menu. After pressing enter, the channel will appear in the *Data Channels* menu. The defined channel parameters can be changed afterwards in the Channel Setup (see Figure 5-40).

Figure 5-40: Statistics Channel Setup- Overview

1	Active	Setting a channel active or inactive; An active channel can be displayed in an instrument,
	button	used in a math channel and can be recorded, an inactive channel not
2	Stored	Select whether channel data shall be stored or not when a measurement is running
	button	
3	Color	Color scheme of the channel can be changed here
4	Channel	Individual channel name; Can be changed individually
	Name	
5	Statistics	Select the statistical value that shall be calculated. Select between AVG, MAX, MIN,
	Mode Setup	RMS and ACRMS
6	Window	Type in the desired window size (will affect the Sample Rate (8))
	Size	
7	Window	Select the unit of the window size. Select between seconds (s), minutes (m), hours (h)
	Size Unit	and days (d) (will affect the Sample Rate (8))
8	Sample Rate	Sample rate that is calculated from the Window size in Hz (Window Size can also be
		changed via Sample Rate changes)
9	Preview	Real Time preview of the calculation
	window	
10	Scaling	Change the channels' scaling by entering a Scaling factor or changing the sensitivity
	menu	(and/or entering an offset) or by a 2-point scaling

Table 5-8: Pushbuttons in the Statistics Channel Setup – Overview

5.3.4 DESCRIPTION OF THE SELECTABLE STATISTICAL PARAMETERS

AVG: Calculates the linear mean value for the selected Window size according to the following formula:

$$AVG = \frac{1}{N} \sum_{i=1}^{N} SignalLevel_i$$

• MAX: Calculates the maximum signal level appearing in the individual time window

$$MAX = MAX{SignalLevel_i}$$

• MIN: Calculates the minimum signal level appearing in the individual time window

$$MIN = MIN\{SignalLevel_i\}$$

RMS: Calculates the quadratic mean value (RMS) for the selected Window size according to the following formula

$$RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (SignalLevel_i)^2} = \sqrt{AVG^2 + ACRMS^2}$$

• ACRMS: Calculates the quadratic mean value which is revised from DC components. This value is identical to the standard deviation calculated according to the following formula

$$ACRMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (SignalLevel_i - AVG)^2}$$

i = 1...N N = Sample Rate of Input Channel * Window Size

Remark: Difference between the RMS and the ACRMS value:

The RMS and the ACRMS value of a signal without DC component is the same. Let's assume a sine wave with an amplitude of 1 and no DC offset:

Figure 5-41: Sine wave with amplitude 1, no DC component

In this case the RMS value is ~0.707 and the ACRMS value is ~0.707 as well. If the signal has a DC component, the RMS value respects this DC component, but the ACRMS value does not respect the DC- component:

Figure 5-42: Sine wave with amplitude 1, 0.5 DC component

For this signal, the RMS value is ~0.866, because the DC component is respected, but the ACRMS value is again ~0.707, because the DC component is not respected.

5.3.5 CREATION OF A FILTER CHANNEL

Add Channel - Filters						
Calculations						
r	Low pass	High pass	Band pass	Band stop		Integrator
Formula		U				
Swept Sine Analysis	Filter frequency	2500	Hz			
Rosette	Filter characteristic	Bessel	Order 4		4	
Filters						
Statistics	Group name	Filters 1				
FFT						
Psophometer						
Power						
Power Group	1					
Data Sources						
Ethernet Receiver	1					
Dynamometer						
Other						
Diagnostics Channel	1					
	1					
					Cancel	Add

Figure 5-43: Popup window for creating a (Low or High pass) Filter channel

After clicking on the *Add* button, the *Calculation Setup* window will appear (see Figure 5-43). For the creation of a Filter channel, the user must select the desired input channel before clicking on the *Add* button. The user can select several input channels simultaneously to create several filter channels with the same settings at once. After selecting the *Filters* section, the user can define the following filter characteristics:

Filter Type: Low pass, High pass, Bandpass, Band-stop, Differentiator, Integrator

If Low pass or High pass filter is selected (see Figure 5-43), the user can select

- Filter Frequency: from 0 Hz to $\left(\frac{Sample Rate}{2} \frac{Sample Rate}{200}\right)$ Hz
- *Filter Characteristic*: Bessel or Butterworth
- Filter Order: 2, 4, 6, 8, 10
- *Group name*: Define a group in the Channel List to which the filter shall be added

If Bandpass or Bandstop filter is selected (see Figure 5-43), the user can select

- Low Frequency: from 0 Hz to < High Frequency Hz
- High Frequency: from (Low Frequency + 1) Hz to $\left(\frac{Sample Rate}{2} \frac{Sample Rate}{200}\right)$ Hz
- *Filter Characteristic*: Bessel or Butterworth
- Filter Order: 2, 4, 6, 8, 10
- Group name: Define a group in the Channel List to which the filter shall be added

If Differentiator is selected, the user can select

O Low pass	High pass	• Differentiator	Integrator
Operation Filter high frequ	d/dt iencies	<u>_</u>	
Filter frequency	4950 Bessel	Hz Order _4	4
Group name	Filters 1		

Figure 5-44: Popup window for creating a Differentiator channel

- *Operation*: Single or double differentiation
- If high frequencies shall be filtered
- Filter Frequency: from 0 Hz to $\left(\frac{Sample Rate}{2} \frac{Sample Rate}{200}\right)$ Hz
- Filter Characteristic: Bessel or Butterworth
- Filter Order: 2, 4, 6, 8, 10
- *Group name*: Define a group in the Channel List to which the filter shall be added

If Integrator is selected, the user can select

O Low pass	High pass	Differentiator	• Integrator
Operation	∫dt		
✓ Filter low freque	encies and DC		
Filter frequency	5	Hz	
Filter characteristic	Bessel	Order _4	
Group name	Filters 1		
oroup name			

Figure 5-45: Popup window for creating an Integrator channel

- *Operation*: Single or double integration
- If low frequencies shall be filtered
- Filter Frequency: from 0 Hz to $\left(\frac{Sample Rate}{2} \frac{Sample Rate}{200}\right)$ Hz
- Filter Characteristic: Bessel or Butterworth
- Filter Order: 2, 4, 6, 8, 10
- Group name: Define a group in the Channel List to which the filter shall be added

Remark: Filters can only be applied to synchronous channels, like analog input channels or counter channels but not to asynchronous channels, like CAN channels, EPAD cannels, or power group channels.

After pressing enter, the channel will appear in the *Data Channels* menu. The defined channel parameters can be changed afterwards in the Channel Setup (see Figure 5-46).

Figure 5-46: Filters Channel Setup- Overview

Active	Setting a channel active or inactive; An active channel can be displayed in an
button	instrument, used in a math channel and can be recorded, an inactive channel not
Stored button	Select whether channel data shall be stored or not when a measurement is running
Color	Color scheme of the channel can be changed here
Channel Name	Individual channel name; Can be changed individually
Filter Mode	Select the filter type: Lowpass, High pass, Differentiator, Integrator
Setup	
Operation Setup	Select the Operation type Single or Double Integration/ Differentiation (only
	applicable for Differentiators and Integrators)
Integrator: Select if	flow frequencies and DC components shall be filtered
Differentiator: Sele	ct if high frequencies shall be filtered
Lowpass/Highpass	not applicable
Frequency	Specify the cut-off frequency from 0 to $\left(\frac{Sample Rate}{2} - \frac{Sample Rate}{2}\right)$ Hz
Selection	2 200
Filter	Select between Bessel and Butterworth filter characteristic
Characteristic	
Selection	
Filter Order	Select a 2 nd , 4 th , 6 th , 8 th or 10 th filter order
selection	
Preview window	Real Time preview of the calculation
Scaling menu	Change the channels' scaling by entering a Scaling factor or changing the sensitivity
	(and/or entering an offset) or by a 2-point scaling
	button Stored button Color Channel Name Filter Mode Setup Operation Setup Integrator: Select if Differentiator: Select Lowpass/Highpass Frequency Selection Filter Characteristic Selection Filter Order selection Preview window Scaling menu

Table 5-9: Pushbuttons in the Filter Channel Setup – Overview

5.3.6 CREATION OF FFT CHANNELS

				Cancel	Add
Ethernet Receiver					
Data Sources					
Power Group					
Power					
Rosette	Group name	FFT Channels	L.		
FFT	Amplitude spectrum	Amplitude	A		
Filters					
Formula	Window type Overlap	Hanning (-31dB)	96 4		
	Data size	4096	Samples		

Figure 5-47: Popup window for creating an FFT channel

For creating a FFT channel, the user must select the channel and then click on the *Add* button in the lower left corner (marked red in Figure 5-19) and select *FFT* in the appeared window (see Figure 5-47). The user can select several input channels simultaneously to create several FFT channels with the same settings at once.

Remark: FFT math can only be applied to synchronous channels, like analog input channels or counter channels but not to asynchronous channels, like CAN channels, EPAD cannels, or power group channels.

Remark: The difference between the FFT calculation using this math module or the Instrument Spectrum Analyzer is that the calculation using the math module is deterministic and the calculation using the Spectrum Analyzer is stochastic, i.e. the deterministic calculation can always be reproduced, because the exact instant of time each FFT spectrum is calculated is contained. This is not the case for the stochastic calculation.

In addition, as the FFT calculation using the math module results in own FFT channels, the data can be exported to third party formats using the Export menu in the PLAY mode (for details, please refer to section 9). This is not the case for the calculation using the Spectrum Analyzer.

Three channels may be created for each FFT calculation:

- The channel containing the complex spectrum Y_k (called *Channel_Name_Cpx*). This channel cannot be visualized with an OXYGEN Instrument but is only useful for exporting it and using it for post-processing in a 3rd party software.
- The channel containing the amplitude spectrum A_k (called Channel_Name_Amp) which is calculated according to the following formula:

$$A_{k} = \frac{1}{N} \sqrt{Re\{Y_{k}\}^{2} + Im\{Y_{k}\}^{2}}; \quad k = 0 \quad [Signal \ Unit]$$
$$A_{k} = \frac{2}{N} \sqrt{Re\{Y_{k}\}^{2} + Im\{Y_{k}\}^{2}}; \quad k = 1 \dots N \quad [Signal \ Unit]$$

This channel can be visualized within OXYGEN using the Spectrum Analyzer (see section 6.12) if the actual spectrum shall be plotted or it may also be assigned to the Spectrogram Instrument (see section 6.17) if the time dependent spectral trend shall be displayed.

• The channel containing the phase information φ_k (called *Channel_Name_Phi*) which is calculated according to the following formula:

$$\varphi_k = \arctan \frac{Im\{Y_K\}}{Re\{Y_K\}}; \quad k = 0 \dots N \quad [Signal Unit]$$

This channel can be visualized within OXYGEN using the Spectrum Analyzer (see section 6.12) if the actual spectrum shall be plotted or it may also be assigned to the Spectrogram Instrument (see section 6.17) if the time dependent spectral trend shall be displayed.

This channel is not calculated automatically but must be selected manually in the Channel Setup of the complex spectrum Channel *Channel_Name_Cpx* after creating the FFT channel (see (14) in Figure 5-49).

After selecting the FFT section, the user can define the following FFT characteristics:

- Data size: Select the number of samples to be transformed simultaneously in the frequency domain here. The data size may vary between 42 to 1048576 (2²⁰) samples. For calculation details, please refer to section 6.12.3.
- *Overlap:* Select an overlapping factor from 0 to 99.97559% here. For calculation details, please refer to section 6.12.7.
- Window Type: Select an appropriate Window function here. The following windows are available: Hanning, Hamming, Rectangular, Blackman, Blackman-Harris, Flat Top or Bartlett. For calculation details, please refer to section 6.12.3.1.1.
- Amplitude Spectrum: Select the type of amplitude spectrum the Amplitude channel shall contain. The following amplitude spectra are available: Amplitude, Amplitude_RMS, Amplitude², PSD, Decibel (Ref: 1), Decibel_RMS (Ref:1) or Decibel_Max_Peak (Ref: Max). For calculation details, please refer to section 6.12.3.2

If None is selected, no amplitude spectrum channel Channel_Name_Amp but only the complex spectrum channel is created.

• *Group Name:* Define a group in the Channel List to which the channel shall be added

After pressing the Add button, the FFT for the selected input channel(s) will be calculated and the Output channels will be visible within the *FFT Channels* topology in the Channel List (see Figure 5-48).

	FFT Channels		
	Linear Sweep_FFT_Cpx Linear Sweep FFT Hann, 50%, 2.4Hz	¢	FFT/Complex
	Linear Sweep_FFT_Amp	Ф	FFT/Amplitude
-	 	 	

Figure 5-48: FFT channels within the Channel List

5.3.6.1 Channel Setup of the Complex spectrum channel

After creating the FFT channel, the following options can be added afterwards within the Channels Setup of the complex Spectrum channel *Channel_Name_Cpx*:

Figure 5-49: Complex FFT channel Setup- Overview

1	Active button	Setting a channel active or inactive: An active channel can be displayed in
1		an instrument used in a math channel and can be recorded an inactive
		channel not
2	Stand button	Salaat whather abannal data shall be stored or not when a measurement is
2	Storea button	select whether channel data shall be stored of not when a measurement is
3	Color	Color scheme of the channel can be changed here
4	Channel Name	Individual channel name: Can be changed individually
-	Input abannal of the EFT calor	lation is displayed here
5	Input channel of the FFT calco	
6	Sample Rate of the input chan	nel is displayed here
7	Data size selection	Select the number of samples to be transformed simultaneously in the
		frequency domain here. The data size may between 42 to 1048576 (220)
		samples. For calculation details, please refer to section 6.12.3.
8	Line resolution selection	Enter the data size by entering the desired line resolution here. For
		calculation details, please refer to section 6.12.3.
9	Improve Line Resolution	Enable Zero-Padding here. For calculation details, please refer to section
	selection	6.12.5.
10	Window Type selection	Select an appropriate Window function here. The following windows are
		available: Hanning, Hamming, Rectangular, Blackman, Blackman-
		Harris, Flat Top or Bartlett. For calculation details, please refer to section
		6.12.3.1.1.
11	Normalization Type	Select between Amplitude True, Power True or No normalization. For
	selection	calculation details, please refer to section 6.12.6.
12	Overlap selection	Select an overlapping factor from 0 to 99.97559% here. For calculation
	_	details, please refer to section 6.12.7.
13	Enable Amplitude channel	Enable or disable the calculation of the amplitude channel here; Enabled
	selection	per default
14	Enable Phase channel	Enable or disable the calculation of the phase channel here; Disabled per
	selection	default

Table 5-10: Complex FFT channel Setup – Overview

5.3.6.2 Channel Setup of the Amplitude spectrum channel

After creating the FFT channel, the following options can be added afterwards within the Channels Setup of the Amplitude Spectrum channel *Channel_Name_Amp*:

Figure 5-50: Amplitude FFT channel Setup- Overview

1	Active button	Setting a channel active or inactive; An active channel can be displayed in	
		an instrument, used in a math channel and can be recorded, an inactive	
		channel not	
2	Stored button	Select whether channel data shall be stored or not when a measurement is running	
3	Color	Color scheme of the channel can be changed here	
4	Channel Name	Individual channel name; Can be changed individually	
5	Input channel of the FFT calculation is displayed here		
6	Sample Rate of the input chan	nel is displayed here	
7	Spectrum Type selection	Change the type of the amplitude spectrum here. For calculation details	
		and spectra to be selected, please refer to section 6.12.3.2	
8	Value selection	If Decibel or Decibel RMS spectrum type is selected, the reference value	
		can be entered here	
9	Averaging selection	Not implemented yet	
10	Preview window	Real Time preview of the calculation	

Table 5-11: Amplitude FFT channel Setup- Overview

5.3.6.3 Channel Setup of the Phase spectrum channel

After creating the FFT channel, the following options can be added afterwards within the Channels Setup of the Phase Spectrum channel *Channel_Name_Phi*:

Figure 5-51: Phase FFT channel Setup- Overview

1	Active button	Setting a channel active or inactive; An active channel can be displayed in
		an instrument, used in a math channel and can be recorded, an inactive
		channel not
2	Stored button	Select whether channel data shall be stored or not when a measurement is running
3	Color	Color scheme of the channel can be changed here
4	Channel Name	Individual channel name; Can be changed individually
5	Input channel of the FFT calcu	alation is displayed here
6	Sample Rate of the input chan	nel is displayed here
7	Spectrum Type selection	Change the type of the phase spectrum here. For calculation details and
		spectra to be selected, please refer to section 6.12.3.2
8	Preview window	Real Time preview of the calculation

Table 5-12: Phase FFT channel Setup- Overview

5.3.7 CREATION OF (STRAIN GAUGE) ROSETTE CHANNELS

Ethernet Receiver				
lata Sources				
Power Group				
ower				
Rosette				
FFT	0.33	69	MPa	4
Filters	Poisson ratio	Young modulus		
Statistics	45 0 60 0 90		Oc	
Formula			0.5	

Figure 5-52: Popup window for creating a Rosette calculation

For creating a Rosette channel, the user must click on the *Add* button in the lower left corner (marked red in Figure 5-19) and a window will appear (see Figure 5-52). To create a Rosette channel, select *Rosette*. After clicking on the OK button, a Rosette main channel (*Rosette_1* in Figure 5-53) with its Sub channels (*Max Principal strain* to *VonMises Stress* in Figure 5-53) is added to the channel List. A click on the gear button of the main rosette channel will open the Rosette settings to perform changes afterwards (see Figure 5-53).

Figure 5-53: Rosette channel setup – Overview

1		1
1	Active button	Setting a channel active or inactive; An active channel can be displayed in
		an instrument, used in a math channel and can be recorded, an inactive
		channel not
2	Stored button	Select whether channel data shall be stored or not when a measurement is
		running
3	Color	Color scheme of the channel can be changed here
4	Channel Name	Individual channel name; Can be changed individually
5	Rosette Type selection	Select the rosette calculation type here: 45° , 60° , 90° (T)
6	Poisson ratio selection	Enter the poisson ration here
7	Young modulus selection	Enter the Young modulus of the used material here
8	Stress unit selection	Select the unit of the Young modulus here: [MPa], [GPa] or [kgf/mm ²]
9	Epsilon A channel	Assign the input channel for <i>Epsilon A</i> here
	assignment	
10	Reference Angle Selection	Select <i>Epsilon A</i> as Reference Angle here; If selected, the background
		will highlight grey-blue
11	Epsilon B channel	Assign the input channel for <i>Epsilon B</i> here
	assignment	
12	Reference Angle Selection	Select <i>Epsilon B</i> as Reference Angle here; If selected, the background
		will highlight grey-blue
13	<i>Epsilon C</i> channel	Assign the input channel for <i>Epsilon C</i> here
	assignment	
14	Reference Angle Selection	Select <i>Epsilon C</i> as Reference Angle here; If selected, the background
		will highlight grey-blue
15	Reference Angle hint	Highlights the selected reference angle in the rosette schematics
	1	able 5-13 Rosette channel setun – Overview

5.3.7.1 Required Input Channels

The Plugin requires three strain gauge input channels (*Epsilon A, B, C*), the angular rosette alignment (45°, 60°, 90° (T)) and the angle reference (*A, B, C*). Available input channels for *Epsilon A, B, C* are analog input channels. The 90° or Tee type rosette requires only 2 input channels (*Epsilon A, B*).

The advantage of using three-channel rosettes is to minimize the effect of error due to misalignment to the elements from the physical axis. Furthermore, the bigger the angle between the gauges, the better the result concerning noise influence.

Remarks:

Channels that are assigned to the Rosette plugin require the engineering unit $\mu m/m$ or um/m. Other engineering units are not accepted and will lead to the error message *Unit of input channels not* $\mu m/m$ or um/m in the Channel Setup of the main rosette channel (see Figure 5-54)

 Al 1/4 Sim
 Φ
 Al 1/2 Sim
 Φ

Unit of input channels not μm/m or um/m Figure 5-54: Error message in case of wrong engineering unit

- The channel to be used for the rosette calculation can be selected before clicking on the Calculator button. If channels 1/1, 1/2 and 1/3 are selected one after the other and a three channel is selected, the channels will be assigned automatically in the following manner after clicking the OK button in the Rosette Calculation Setup: 1/1 to Epsilon A, 1/2 to Epsilon B and 1/3 to Epsilon C. If channels 1/3, 1/1 and 1/2 are selected one after the other and a three channel is selected, the channels will be assigned automatically in the following manner after clicking the OK button in the Rosette Calculation Setup: 1/1 to Epsilon A, 1/2 to Epsilon B and 1/3 to Epsilon C.
- If six channels 1/1, 1/2, 1/3, 1/4, 1/5 and 1/6 are selected one after the other, two three-channel rosettes or three two-channel rosettes can be created with one click on the Calculator button. The input channels will be assigned in the following manner (example for two three-channel rosettes): Rosette 1: 1/1 to Epsilon A, 1/2 to Epsilon B and 1/3 to Epsilon C
 Rosette 2: 1/4 to Epsilon A, 1/5 to Epsilon B and 1/6 to Epsilon C
- If four channels1/1, 1/2, 1/3, 1/4 are selected one after the other and two three-channel rosettes shall be created, the input channels will be assigned in the following manner:
 Rosette 1: 1/1 to Epsilon A, 1/2 to Epsilon B and 1/3 to Epsilon C
 Rosette 2: 1/4 to Epsilon A, Epsilon B and Epsilon C will remain unassigned
- The channel assignment can be edited after creating the Rosette calculation in the Channel setup of the main channel (see 16 in Figure 5-53) by dragging and dropping the desired channel from the Channel List on the left-hand side to the individual input channel of the rosette calculation (see Figure 5-55)

All Search , 🏋 📑	Bosette 1			
Active Stored Channel Color	- Indette -			
LocalNode		1		
Rosette Channels				
Rosette_1	r r r r		Y	
Max Principal Strain				
Min Principal Strain	45°	60°	T-Rosette	
C Angle	CHANNEL MAPPING			
Average Strain				
Max Shear Strain	· · · · · · · · · · · · · · · · · · ·			
Max Principal Stress				
Min Principal Stress		-	B AL 1/2 Si	-
Max Shear Stress				
VonMises Stress			1	
DEWE2,445				
TRION-1603-LV-6-BHC				
■ O AL11 Sim #11 TRON-1003-0/-6-8NC ■			1	
Al 1/2 Sim				
Al 1/3 Sim				
■ N11/4 Sim		Al 1/2 Sim		
Al 1/5 Sim				

Figure 5-55: Channel assignment in the rosette channel setup

If the assignment of a rosette input channel is missing, the error message *Input channels not ready* will be displayed at the bottom of the Channel Setup (see Figure 5-56)

	Inp	ut channels not ready
	Epsilon A	
_		_

Figure 5-56: Error message in case of missing channel assignment

The sample rate of the channels assigned to one rosette calculation must all be same. If they differ, the error message Sample rates of input channels differ will be displayed at the bottom of the Channel Setup (see Figure 5-57)

Sample rates of input channels differ

Figure 5-57: Error message in case of different channel sample rates

The sub channels (see 17) in Figure 5-53) resulting from the rosette calculation have a Channel Setup that can be accessed via the Gear Button in the Channel List as well. But only the Channel scaling can be edited there.

5.3.7.2 Resulting Output Channels

The plugin uses the so-called Mohr's circle (see Figure 5-58) for the calculations. For details, please refer to the relevant literature.

¹ Source: https://en.wikipedia.org/wiki/Mohr%27s_circle from 2018-09-03

The calculated values are represented in channels, which are shown below.

- Max Principle Strain \rightarrow Max. Strain in angle direction [µm/m]
- Min Principle Strain

Max Principle Stress

Min Principle Stress

- Angle
- Average Strain \rightarrow Center of Mohr's circle [µm/m]
 - Max Shear Strain \rightarrow Radius of Mohr's circle [µm/m]
 - \rightarrow Max. stress in angle direction [MPa]

 \rightarrow Angle of max. strain [°]

 \rightarrow Min. stress in angle+90° direction [MPa]

 \rightarrow Min. Strain in angle+90° direction [μ m/m]

- Max Shear Stress \rightarrow Max. shear stress in angle direction [MPa]
- VonMises Stress
- → Virtual uniaxial stress [MPa]

5.3.7.3 Usage of the Plugin

The Rosette Math plugin is used to determine the angle and max/min amplitude of strain and stress on a surface. This is used when it is not known which direction of strain/stress has to be expected. Rosette strain gauges are available combined in one foil (stacked construction), alternatively it's possible to use three separate strain gauges (planar construction).

Figure 5-59 shows sketches of different rosette types.

Figure 5-59: Sketch of different rosette types: left: 90° (T), Middle: 45°, Right: 120° rosette

5.3.7.4 **Physical Basics**

This chapter includes some important term explanations.

• Strain ε : Is the mechanical deformation measured as a relation between length change relative to the initial length:

$$\varepsilon = \frac{dl}{l} \left[\frac{\mu m}{m} \right]$$

The strain is usually presented in μ m/m, so the ratio of elongation is micrometers comparing to the length of a specimen in meters. So, what does that mean if we measure a value of 2000? First of all, we can also express this in percent. Strain in μ m/m divided by a factor of 10000 results in elongation in percent. In the case of 2000, the elongation will be 0.2%.

Stress σ : Is defined as the average force per unit area, also taking in account the material.

$$\sigma = \frac{F}{A} \left[\frac{N}{mm^2} \right]$$

• Young's modulus E: The formulas shown above only work in the linear part of the Strain-Stress-*Curve*, which is shown in Figure 5-60. In this area a constant factor between stress and strain exists.

$$E = \frac{\sigma}{\varepsilon} \left[M \frac{N}{mm^2} = GPa \right]$$

Where E is the Young's modulus or Elastic modulus. This constant is depending on the used material (e.g. steel = 210 kN/mm²). The measured value from the strain gauge is therefore the strain and you get the stress by calculating $\sigma = E * \varepsilon$.

5.3.7.5 Implemented Formulas

The Rosette calculations depend on the selected rosette type and angle reference.

5.3.7.5.1 Constants

 $\varepsilon_P \dots Max.$ Principle Strain $\varepsilon_Q \dots Min.$ Principle Strain $\theta \dots$ Angle in max. strain direction

5.3.7.5.2 Angle Reference

 $\begin{array}{l} A: \theta_{P,Q} = (\dots) \\ B: \theta_{P,Q} = (\dots) - 45^{\circ} \, or \, 60^{\circ} \\ C: \theta_{P,Q} = (\dots) - 90^{\circ} \, or \, 120^{\circ} \, or \, 240^{\circ} \end{array}$

5.3.7.6 Calculation of 45° and 90° Rosette

Avg Strain MaxShearStrain

 $\begin{aligned} \varepsilon_P &= \varepsilon_1 \\ \varepsilon_Q &= \varepsilon_2 \end{aligned}$

$$\varepsilon_{P,Q} = \frac{\varepsilon_1 + \varepsilon_3}{2} \pm \frac{1}{\sqrt{2}} \sqrt{(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2}$$
$$\theta_{P,Q} = \frac{1}{2} \tan^{-1}(\frac{2\varepsilon_2 - \varepsilon_1 - \varepsilon_3}{\varepsilon_1 - \varepsilon_3})$$

5.3.7.7 Calculation of 60° and 120° Rosette

$$\varepsilon_{P,Q} = \frac{\varepsilon_1 + \varepsilon_2 + \varepsilon_3}{3} \pm \frac{\sqrt{2}}{3} \sqrt{(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2 + (\varepsilon_3 - \varepsilon_1)^2}$$
$$\theta_{P,Q} = \frac{1}{2} \tan^{-1} (\frac{\sqrt{3}(\varepsilon_2 - \varepsilon_3)}{2\varepsilon_1 - \varepsilon_2 - \varepsilon_3})$$

5.3.7.8 Calculations valid for all Rosette Types

Max/Min Principle Stress

$$\sigma_P = \frac{E}{1 - \gamma^2} (\varepsilon_P + \gamma \varepsilon_Q) \left[\frac{N}{m^2} \right]$$
$$\sigma_Q = \frac{E}{1 - \gamma^2} (\varepsilon_Q + \gamma \varepsilon_P) \left[\frac{N}{m^2} \right]$$

Von Mises Stress

$$\sigma_{\nu M} = \sqrt{\frac{\left(\sigma_P - \sigma_Q\right)^2 + \sigma_P^2 + \sigma_Q^2}{2}} \left[\frac{N}{m^2}\right]$$

Max Shear Stress

$$\sigma_{SP} = \frac{\sigma_P - \sigma_Q}{2} \left[\frac{\mathrm{N}}{m^2} \right]$$

Addition to Angle Calculation

Quadrant	Ζ	N	Angle φ_0	$\varphi^* = tan^{-1}(\frac{num}{denom})$
I	+	+	$0^{\circ} \le \varphi_0 \le +45^{\circ}$	$\varphi_0 = \frac{\varphi^*}{2}$
II	+	-	$+45^\circ \le \varphi_0 \le +90^\circ$	$\varphi_0 = \frac{180^\circ + \varphi^*}{2}$
III	-	-	$-45^\circ \le \varphi_0 \le -90^\circ$	$\varphi_0 = \frac{\varphi^* - 180^\circ}{2}$
IV	-	+	$0^{\circ} \ge \varphi_0 \ge -45^{\circ}$	$\varphi_0 = \frac{\varphi^*}{2}$

Table 5-14: Determining the principal axis angle φ_0 taking the sign of the numerator and the enumerator into account

5.3.8 **PSOPHOMETER**

Please refer to section 13.

5.3.9 SWEPT SINE ANALYSIS

5.3.9.1 Introduction

Please note that this is an optional feature and requires a license.

The Swept Sine Analysis can be used to determine the transfer function and the bode diagram of a DUT that is stimulated by a shaker which is driven by a wave-generator replaying a sine sweep. An exemplary testbed could look like the following (see Figure 5-61):

Figure 5-61: Exemplary testbed to use the Swept Sine Analysis plugin

A DUT is standing on a shaker. The shaker is driven by a Signal Generator which replays a sine sweep. One accelerometer is applied directly on the shaker and provides the reference (source) signal that is used to stimulate the DUT. One or several additional accelerometers are applied directly on the DUT that measure the acceleration on the DUT surface on different positions (sink).

These signals can be applied to the Swept Sine Analysis plugin to determine the transfer function and the phase shift from source to sink.

5.3.9.2 Setting up a Swept Sine Analysis

To set up the Swept Sine Analysis plugin, perform the following steps:

- At first, mark the checkbox of the channel which provides the reference signal for the Swept Sine Analysis (see (1) in Figure 5-62)
- Next, mark the channel that provides the signal measured on the signal sink (see 2) in Figure 5-62). Several sink signals could be applied to one Swept Sine Analysis group.
- Click on the *PLUS* (see 3) in Figure 5-62) sign to open the math setup and select *Swept Sine Analysis*.
 Edit the channel group name if desired and click on the *OK* button afterwards.

Figure 5-62: Steps to configure a Swept Sine Analysis

5.3.9.3 Setup Overview

Figure 5-63: Swept Sine Analysis setup – Overview

1	Reference channel	The channel that provides the reference signal can be edited here: This channel is
_	selection	used to determine the fundamental frequency which is available in the channel
	serveron	F fund (see section 5.3.9.4)
2	Detection Threshold selection	Amplitude threshold for determining the fundamental frequency; If the amplitude of the reference channel is below the specified threshold (percentage of the channel input range), the fundamental frequency will not be determined; I.e. Channel Input Range = 100 V and Detection Threshold = 1% ; \rightarrow The signal amplitude must be 1V or higher to determine the fundamental frequency
3	Calculation <i>mode</i> selection	<i>RMS</i> or Zero- <i>Peak</i> selectable; The output channels (see section 5.3.9.4) may contain either the RMS or Zero-to-Peak level as result
4	Start frequency selection	Enter the lower frequency limit for the Swept Sine Analysis (from 1 to 1000 Hz)
5	Stop frequency selection	Enter the upper frequency limit for the Swept Sine Analysis (from 1 to 1000 Hz)
6	Step size selection	Enter the frequency resolution of the Swept Sine Analysis (from 1 to 100 Hz)
7	Periods selection	Number of signal periods of the reference signal that shall be used for updating one value
8	Input channels selection	Select the input channels that contain the sink signals (sensors that applied on the DUT); One or several sensors can be selected
9	Enable immediate value channels switch	The channels that contain the time domain signals (see section 5.3.9.4) are enabled with this switch; Per default disabled
10	Enable Bode	The channels that contain the frequency domain signals (see section 5.3.9.4) are
	diagram switch	enabled with this switch; Per default enabled
11	Max update rate	Select the calculation update rate (from 1 to 10s)
	selection	

Table 5-15: Swept Sine Analysis setup – Overview

5.3.9.4 Swept Sine Analysis Output channels

- F_fund: Contains the fundamental frequency of the Swept Sine Analysis; Calculation based on the signal provided by the reference (source) channel
- ChannelName_iRMS or ChannelName_iPeak: Time domain channel; Contains the amplitude (RMS or Zero-to-Peak level depending on the selection in ③ in Figure 5-63) of the signal at the actual frequency; The amplitude is only referring to the fundamental frequency signal components; Can be assigned to a Recorder (see section 6.4), Digital Meter (see section 6.3) or similar

- *ChannelName_*iPhi: Time domain channel; Contains the phase shift of the signal at the actual frequency; Can be assigned to a Recorder (see section 6.4), Digital Meter (see section 6.3) or similar
- ChannelName_iUFRMS or ChannelName_iUFPeak: Time domain channel; Contains the amplitude (RMS or Zero-to-Peak level depending on the selection in ③ in Figure 5-63) of the signal at the actual frequency; The amplitude is referring to the entire signal components; Can be assigned to a Recorder (see section 6.4), Digital Meter (see section 6.3) or similar
- ChannelName_RMS or ChannelName_Peak: Frequency domain channel; Contains the transfer function (RMS or Zero-to-Peak level depending on the selection in ③ in Figure 5-63); The amplitude is referring to the fundamental frequency signal components; Can be assigned to a Spectrum Analyzer (see section 6.12) instrument for displaying the data.
- *ChannelName_*Phi: Frequency domain channel; Contains the phase diagram; Can be assigned to a Spectrum Analyzer (see section 6.12) instrument for displaying the data.
- ChannelName_UFRMS or ChannelName_UFPeak: Frequency domain channel; Contains the transfer function (RMS or Zero-to-Peak level depending on the selection in ③ in Figure 5-63); The amplitude is referring to the entire signal components; Can be assigned to a Spectrum Analyzer (see section 6.12) instrument for displaying the data.

5.3.9.5 Calculation Remarks

- The maximum frequency span is from 1 to 1000 Hz. To achieve a suitable accuracy, it is recommended to set the sample rate of the input channels to at least 20 times the maximum frequency, this to 20 kHz in case of 1 kHz maximum frequency span.
- The highest resolution of the frequency domain channels is 1 Hz. Data of non-integer frequency bins is rounded to the next integer frequency bin.
- If the sweep does not exactly hit exactly one frequency bin which is contained in the data array, data for the certain frequency bin is filled up by linear interpolation of the two narrowed frequency bins
- The channels containing frequency domain data contain only one single value data array at the end of the measurement. In case of multi-file recording (see section 4.1.2), this data array will only be included in the last data file, the other files won't contain this data.
- If the sweep is passing the same frequency several times, there won't be several values for the same frequency stored, but the maximum value only is stored to the data file.
- If the screen is frozen (see 16) in Figure 2-1) and the orange cursor is moved either in the Overview Bar or in a Recorder, the data of the single value array will change approximately every second as the array is continuously filled with data. In the end, there will only be the final value.
- As the channels containing frequency domain data contain only one single value data array at the end of the measurement, there won't be reduced Statistics data available (see section 7).

5.3.10 OFFLINE MATH

The topology *Offline Math* deems calculations that shall be performed after the measurement is finished within a data file. OXYGEN 3.1 supports the following Offline Math features. The features will be extended within the proximate OXYGEN releases.

- Channels can only be edited within one open session. This denotes that channels can be created and edited as long as a data file is opened. After re-opening a data file, the previously created channels cannot be edited any more.
- Channels can be added in the same manner as explained in section 5.3 by clicking on the + button (see Figure 5-19) at the lower left side of the Channel List.

- Channels created within one open session can be deleted by clicking on the *Delete Math Channel* button (see Table 5-1). After re-opening a data file, the previously created channels cannot be deleted any more.
- Formulas, Filters, Statistics and FFT channels can be created and edited within one session. The Psophometer plugin and the Swept Sine Analysis plugin can be used offline as well. Offline Math is not applicable yet for Power Groups, Rosette calculations or the scaling of an analog input channel.
- Channel dependencies are respected during Offline Math calculations. This denotes that it is possible to create a Filter channel and a Statistics Channel that is applied on this certain Filter channel within one session. If the Filter channel is edited again, the Statistics channel will automatically be recalculated, too.
- Channels that have been created offline can be recognized on the Green Record button in the Channel List (see Figure 5-64):

Figure 5-64: Recognition of offline created channels

Created channels and any changes can be stored to the data file by pressing the *Store data* button (see Figure 5-65 or (9) in Figure 2-1):

Created channels and any changes can be exported to a setup file by pressing the Save setup file button (see Figure 5-66 or (11) in Figure 2-1):

	¢	
Figure 5-66: Save se	e <i>tun file</i> hut	ton

• A Progress indicator will inform about the actual calculation progress (see Figure 5-67) and contains information about the number of calculated channels, the calculation progress in percent and the remaining calculation time:

Figure 5-67: Progress indicator for Offline Math calculations

• A data file recorded with OXYGEN 2.x can be opened with OXYGEN 3.x to apply Offline Math. After storing changes to the data file, it cannot be opened with OXYGEN 2.x again but only with OXYGEN 3.x.

Please be aware that an Offline Statistics channel will differ from an Online statistics channel, i.e. at the beginning of the file or in case of Event based waveform recording (see section 7). In the example displayed in Figure 5-68, the green channel is an online calculated statistics channel applied on the yellow analog channel and the red channel is an offline calculated statistics channel applied on the yellow analog channel with identical channel settings. The deviation of the green and the red channel is due to the availability of the full analog data during online calculation. During the offline calculation, only the event based recorded analog data is available.

Figure 5-68: Deviation of Offline and Online statistics channels in case of Event based waveform recording

Please be aware that an Offline Filter channel will differ from an Online Filter channel, i.e. at the beginning of the file or in case of Event based waveform recording (see section 7). In the example displayed in Figure 5-69, the green channel is an online calculated Integrator applied on the yellow analog channel and the red channel is an offline calculated integrator applied on the yellow analog channel with identical channel settings. The deviation of the green and the red channel happens, because the offline calculated integrator will oscillate at the beginning of each new event, but the online calculated integrator not, because the analog data is always available during online calculation.

Figure 5-69: Deviation of Offline and Online Filter channels in case of Event based waveform recording

5.4 CREATING POWER GROUPS IN OXYGEN

¢	1 2 3 4										
4	á.	A Sea	rth				-				>>>
► ľ	-	X Acti	ve Stored Channel Color	Add Channel - Power G	roup						
- 1	v		DEWE2-A4	Calculations		Create a new 3P4W pr	ower group (3 phase).			1	
2			TRION-BASE	Formula							
\odot		5	TRION-1620-ACC-6-BNC	Statutics							\$
<u> </u>	ſ		Al 2/1 Sim	Filters							
1			A 2/2 Sim	RFT .							
_ 1			Al 2/3 Sim	Rosette							
	i i		Al 2/4 Sim	Power							
_ 1			Al 2/5 Sim	Power Group							
_ 1			Al 2/6 Sim	Data Sources							
_ 1	Ē		CNT 2/1 Sim	Ethernet Roceiver							
	-		TRION 2400 dSTG 8-LOB								
	E		Al 3/1 Sim								
_ 1	C		Al 3/2 Sim								
_ 1	C		Al 3/3 Sim								
			Al 3/4 Sim								
_ 1	E		Al 3/5 Sim								
	E		Al 3/6 Sim								
	E		Al 3/7 Sim						Cancel	Add	
			Al 3/8 Sim	· 0.000000	AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V	
_ 1	~		TRION-2402-MULTI-4-D								
		2	Al 4/1 Sim	@ 0.038276	AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V	
		2 🚺	Al 4/2 Sim	· 0.009977	AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V	
			Al 4/3 Sim	· 1.980799	AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V	
			Al 4/4 Sim	· 2.803839	AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V	
1	6		CAN 4/1 Sim	(b) used as	analog	HighSpeed					
	v		Video Channels								
			HP HD Webcam [Fixed]	*			30 fps				
1			Coefficiency Starson USE Comment	\$			30 fps				
5		_									
	+	-	- 2								

Please note that this is an optional feature and requires a license.

Figure 5-70: Popup window for creating a Power Group

A Power Group can be created by pressing either the *Add* button or the *Calculator* button in the lower left corner of the Data Channels menu (both buttons marked red in Figure 5-70).

For details about the OXYGEN Power module please refer to the *Power Technical Reference Rx.x* Manual which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

5.5 OXYGEN ETHERNET RECEIVER PLUGIN

¢	1 2 3 4										
4	a.	A Stercha			11	-					
I		X Active Stored Channel	Color	Add Channel - Ethernet Receiver							
r		DEWE2-A4		Calculations	Configuration file				1		
2		TRION-BASE		Formula	Select receiver contr	garation file		Browse			
\odot		TRION-1620-ACC-6-BNC		Statistics						8	
<u> </u>		Al 2/1 Sim		Filters							
- 1	ľ	A 21 TEOL HED ACCA		HT.							
		A 12/3 Sim		Rosette							
		Al 2/4 Sim		Power							
		Al 2/5 Sim		Power Group							
		Al 2/6 Sim		Data Sources							
		CNT 2/1 Sim		Ethernet Receiver							
	-	TRION-2400-dSTG-8-L0B									
		Al 3/1 Sim									
	C	Al 3/2 Sim	-00								
		Al 3/3 Sim									
	Ľ	Al 3/4 Sim									
		Al 3/5 Sim									
		Al 3/6 Sim									
	C	Al 2/7 Sim						Cancel	244		
		Al 3/8 Sim		* 0.000000 AVG	Voltage	10000 Hz	-10 V _ 10 V	Scale: 1 Offset: 0	Unit: V		
	× -	TRION-2402-MULTI-4-D									
		Al 4/1 Sim		@ 0.038276 AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		Al 4/2 Sim	40	@ 0.009977 AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		Al 4/3 Sim	40		Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		Al 4/4 Sim	+0	@ 2803839 AVG	Voltage	10000 Hz	-10 V 10 V	Offset: 0	Unit V		
		CAN 4/1 Sim CAN 4/3 THOM-385-Haldh	+0	used as analog	HighSpeed						
1	× 1	Video Channels	-								
		HP HD Webcam [Fixed] HP HD Webcam [Fixed] U38 Can		*		30 fps					
		CyberLink Wering Manage		0		30 fps					
r											-
l	+										

Please note that this is an optional feature and requires a license.

Figure 5-71: Popup window for acquiring an Ethernet Receiver Data stream

An Ethernet Receiver data stream can be acquired and configured by pressing the *Add* button in the lower left corner of the Data Channels menu (marked red in Figure 5-71).

For details about the Ethernet Receiver plugin please refer to the *Oxygen Ethernet Receiver XML Configuration Vx.x* Manual which is available on the DEWETRON CCC-portal (<u>https://ccc.dewetron.com/</u>).

5.6 COUNTER CHANNELS IN OXYGEN

OXYGEN supports three different Counter modes: Event Counting, Frequency determination and Encoder Mode (incl. X1, X2, X4 and A-up / B-down) counting.

The following extract from TRION[™] module Technical Reference Manual provides an explanation of the different counting modes. For detailed information, please refer to the TRION[™] module Technical Reference Manual.

5.6.1 EXPLANATION OF THE DIFFERENT COUNTER MODES (EXTRACT FROM THE TRION[™] MODULE TECHNICAL REFERENCE MANUAL)

5.6.1.1 Event Counting

In Event Counting, the counter counts the number of pulses that occur on input A/B. At every acquisition clock, the counter value is read without disturbing the counting process.

Figure 5-72 shows an example of event counting where the counter counts eight events on Input A or B. Synchronized Value is the value read by the TRION-CNT module at Acquisition Clock (encircled numbers in the figure, e.g. 1, 2).

Figure 5-72: Event Counting

If counting at falling edges is necessary, the input signal must be inverted. This can be done directly in the software by selecting inverted input.

5.6.1.2 Frequency Measurement

In general, it is possible to take the inverse of a period measurement to get the frequency of the input signal. If the period time measurement is done, an inaccuracy of counted internal time base cycles of ± 1 cycle appears, because the counted cycles of the internal time base depend on the phase of the input signal with respect to the internal time base. For long period times, and therewith low frequencies, the measurement error is negligible. At high frequencies, and therewith short period times, few cycles are counted. In this case the error of ± 1 cycle becomes significant.

Input Frequency	Number of internal time base cycles	Measurement error of -1 cycle	Measurement error of +1 cycle	Calculated frequency with error of -1 cycle	Calculated frequency with error of +1 cycle
40 kHz	2000	1999	2001	39,98 kHz	40,02 kHz
10 MHz	8	7	9	8,75 MHz	11,25 MHz

Figure 5-73 Accuracy at period time measurement

For higher precision result, a combination of main and sub counter is used internally for getting higher precision at the frequency measurement. The main counter is running on event counting (or encoder mode). The sub counter measures the time between. The sub counter measures exactly the time of the input event with a resolution of 12.5 ns relative to the acquisition clock. At every rising edge on Input A the counter value of the sub counter is stored in a register. At every Acquisition Clock (1, 2, ...,6) the values of both counters are read out.

Figure 5-74 Frequency Measurement

5.6.1.3 Encoder

Motion encoders have usually three channels: channel A, B and Z. Channel A and channel B are providing the square signals for the counter and have a phase shift of 90°. With this phase shift, the decoder can recognize the rotation direction of the motion encoder. The third channel types out one pulse at a certain position at each revolution. This pulse is used to set the counter to zero. The amount of counts per cycle at a given motion encoder depends on the type of decoding: X1, X2, X4. All three types are provided by the TRION-CNT module. Some motion encoders have two outputs, which are working in a different way. Either channel A or channel B providing the square signal, depending on the direction of the rotation. Also, this type is supplied by the TRION-CNT module.

In the first case X1 decoding is explained. When Input A leads Input B in a quadrature cycle, the counter increments on rising edges of Input A. When Input B leads Input A in a quadrature cycle, the counter decrements on the falling edges of Input A. At every Acquisition Clock (1, 2, ..., 9), the counter value is read out.

Figure 5-75 shows the resulting increments and decrements for X1 encoding.

Figure 5-75: Quadrature Encoder X1 Mode

For X2 encoding, the rising edges and the falling edges of Input A are used to increment or decrement. The counter increments if Input A leads Input B and decrements if Input B leads Input A. This is shown in Figure 5-76.

Figure 5-76: Quadrature Encoder X2 Mode

Similarly, the counter increments or decrements on each edge of Input A and Input B for X4 decoding. The condition for increment and decrement is the same as for X1 and X2. Figure 5-77 shows the results for X4 encoding.

Figure 5-77: Quadrature Encoder X4 Mode

The third channel Input Z, which is also referred as the index channel, causes the counter to be reloaded with zero in a specific phase of the quadrature cycle. Figure 5-78 shows the results for X1 encoding with input Z.

Figure 5-78: Quadrature Encoder with channel Z

The A-Up/B-Down Encoder supports two inputs, A and B. A pulse on Input A increments the counter on its rising edges. A pulse on Input B decrements the counter on its rising edges. At every Acquisition Clock (1, 2, ..., 9), the counter value is read out.

This situation is shown in Figure 5-79.

Figure 5-79: A-Up/B-Down Encoder

5.6.2 TRION[™] COUNTER OVERVIEW

		Н	ardware			
	CNT	ACC	dACC	BASE	TIMING	VGPS
#Counter	6	1	2	2	1	1
#DI/ Counter	18	-	-	6	3	3
Isolation	✓	✓	X	X	X	\mathbf{X}
Trigger Level	0 to 50V	70% of	Progr.	CMOS/TTL	CMOS/TTL	CMOS/TTL
	12mV steps	input range	within input			
Soncor Supply	5V and 12V		range	5V and 12V	5V and 12V	5V and 12V
Sensor Suppry	5 V and 12 V			5 V and 12 V	5 V and 12 V	5 V and 12 V
		<u> </u>	oftware			
Encoder	\checkmark	\mathbf{X}	\mathbf{X}	\checkmark	\checkmark	✓
CDM+Trigger						
Frequency	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
Measurement						
Event Counting	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓
Trigger Level	0 to 50V	70% of	CMOS/TTL	CMOS/TTL	CMOS/TTL	CMOS/TTL
	12mV steps	input range				

Table 5-16: TRION[™] Counter Overview

As shown in Table 5-16, *Frequency* measurement and *Event* counting can be done with every TRION[™] module with counter input. Encoders and CDM+Trigger sensors cannot be connected to a the TRION[™]-1620-ACC or the TRION[™]-2402-dACC module as they don't have several digital input channels per counter channel. Hence, angle and rpm measurements are possible with a counter channel of a TRION[™]-1620-ACC or TRION[™]-2402-dACC module, but no turning direction can be determined.

Please note that the Trigger Level supported by the TRION[™]-2402-dACC module differs from the software possibilities.

5.6.3 CHANNEL LIST OF COUNTER CHANNELS

~		COUNT	ER CNT 2/1 Sim	()			
			CNT 2/1 Sim	@	1.479163e+5	AVG	Encoder
		0	CNT 2/1 TRION-CNT-6-L1B		-2147483848	2147483647	
			Frequency_CNT 2/1 Sim	商	1.000000e+6	AVG	Frequency
		0	CNT 2/1_Sub TRION-CNT-6-L1B		0.001	00000006	requercy
		-	Angle_CNT 2/1 Sim	101	1.036439e+5	AVG	Rotation
		-	CNT 2/1_Displacement TRION-CNT-6-L1B	τφr	0	360	
		-	Speed CNT 2/1 Sim		1.171875e+5	AVG	44.4
		-	CNT 2/1_Velocity TRION-CNT-6-L1B	Ψ	-100000	10000	velocity

Figure 5-80: Channel List of a Counter channel

4 single sub-channels are created for each available Counter channel (*COUNTER CNT 2/1 Sim* in Figure 5-80)in the Channel List. The counter hardware of one Counter channel (except TRION[™]-dACC and TRION[™]-ACC hardware) consists of two different counter logics, the *Main counter* and the *Sub counter* (see Figure 5-81).

The first sub-channel (*CNT 2/1 Sim* in Figure 5-80) is linked to the Main counter. If the Counter channel shall be used in the *Event Counting* or *Encoder mode* (X1, X2, X4, A-up/B-down), it must be defined in the Channel Setup of this sub-channel. The *Frequency mode* can be selected in this sub-channel as well, but this is only due to guarantee the compatibility with old setup files. The sub-channels 3 and 4 will disappear if the *Frequency mode* is selected (*Angle_CNT2/1 Sim* and *Speed_CNT 2/1 Sim* in Figure 5-80). The second sub-channel (*Frequency_CNT 2/1 Sim* in Figure 5-80) is linked to the Sub counter. This channel is used for the frequency measurement. If *Frequency mode* is selected in sub-channel one (*CNT 2/1 Sim* in Figure 5-80), sub-channel two (*Frequency_CNT 2/1 Sim* in Figure 5-80) is deactivated and does not display data.

The third sub-channel (Angle_*CNT 2/1 Sim* in Figure 5-80) calculates the angle by using the data acquired from the *Main counter* and *Sub counter* logic and the fourth sub-channel (*Speed_CNT 2/1 Sim* in Figure 5-80) calculates the speed by using the data acquired from the *Main counter* and *Sub counter* logic.

Figure 5-81: Block diagram of one Counter channel on a TRION[™]-CNT module

Remark: Please note that the maximum bus data rate of 90 MB/s is reached if 6 channels of a TRION[™]-CNT module are stored with 2 MHz Sample Rate!

5.6.4 CHANNEL SETUP OF A COUNTER CHANNEL

Each of the four sub-channels has an own Channel Setup. The Channel Setups of all 4 sub-channels is summarized in the Channel Setup of the main counter channel (*COUNTER CNT 2/1 Sim in* Figure 5-82) and can be entered by clicking on the gear button (see Figure 5-82). The scaling of a sub-channel can be changed in the Channel Setup of the individual sub-channel.

~		COUNT	ER CNT 2/1 Sim		御			
			CNT 2/1 Sim	TRION-CNT-6-L1B	۲	1.479163e+5	AVG	Encoder
			Frequency_CNT 2/1	Sim	牵	1.000000e+6	AVG	Frequency
			Angle_CNT 2/1 Sim	TRION-CNT-6-L1B	傪	1.036439e+5	AVG	Rotation
			Speed_CNT 2/1 Sim	TRION-CNT-6-L1B	٢	1.171875e+5	AVG	Velocity

Figure 5-82: Channel List of a Counter channel

In the following, the Channel Setup of a Main Counter channel for and its options for an *Event* mode and an *Encoder* mode are explained on the example of a TRIONTM-CNT module. Due to limited hardware possibilities, the channel setup of a TRIONTM-ACC or TRIONTM-dACC module counter channel provides less options.

5.6.4.1 Channel Setup for a TRIONTM-CNT Channel in *Event* mode

Figure 5-83: Channel Setup for a TRION[™]-CNT channel in *Event* mode
		Amplifier Options
1	Mode menu	Counter mode selection: Events, Frequency or Encoder
2	Threshold level	Threshold (Trigger) Level selection (depends on the TRION TM hardware, see Table
		5-16)
3	Retrigger level	Retrigger Level selection (depends on the TRION TM hardware, see Table 5-16)
4	Filter menu	Selection of a digital filter; for additional information please refer to section 5.6.5
5	Coupling menu	Coupling (HP filter) selection (availability depends on TRION TM hardware)
		Counter Group Settings
6	<i>Type</i> menu	Decoding type: Rotation or Linear decoding type
7	Pulses selection	Number of pulses transmitted by the counter per revolution, meter,
8	Unit selection	Unit selection; for rotational sensors fixed to revolution, set to meters per default for
		linear sensors
9	Resample rate	Select the Resample rate here; needed if time synchronous counter and analog data
	selection	is required. Enter the sample rate of the analog channel here and counter data will be
		time synchronous to the analog data
		Signal Routing
10	Source_A	Select the input signal that shall be routed to <i>Source_A</i>
	selection	
11	HW Reset button	HW reset selection; If this option is selected, a second input Source_Z must be
		selected. Source_A channel is reset if the edge of Source_Z raises from 0 to 1
12	Source_Z	Select the input signal that shall be routed to <i>Source_Z</i> (only applicable if <i>HW Reset</i>
	selection	is selected)
13	SW Reset button	SW Reset selection; If this option is selected, Source_A is reset after the number of
		pulses entered in (7) is reached
14	Reset now button	If this button is pressed, a manual hardware reset is forced
15	Invert channel	Inverts the respective input channel
	button	

Table 5-17: Menu of a Counter channel in the Event mode

Remark: An automatic Counter Reset at Recording Start is not supported

5.6.4.2 Channel Setup for a TRION[™]-CNT Channel in *Encoder* mode

Figure 5-84: Channel Setup for a TRION[™]-CNT channel in *Encoder* mode

		Amplifier Options
1	Mode menu	Counter mode selection: Events, Frequency or Encoder
2	Threshold level	Threshold (Trigger) Level selection (depends on the TRION TM hardware, see Table
		5-16)
3	Retrigger level	Retrigger Level selection (depends on the TRION TM hardware, see Table 5-16)
4	Filter menu	Selection of a digital filter; for additional information please refer to section 5.6.5
5	Coupling menu	Coupling (HP filter) selection (availability depends on TRION TM hardware)
		Counter Group Settings
6	<i>Type</i> menu	Decoding type: Rotation or Linear decoding type
7	Pulses selection	Number of pulses transmitted by the counter per revolution, meter,
8	Unit selection	Unit selection; for rotational sensors fixed to revolution, set to meters per default for
		linear sensors
9	Encoder Mode	Select the Encoder mode: X1, X2, X4, A-Up/B-Down
	selection	
10	Resample rate	Select the Resample rate here; needed if time synchronous counter and analog data
	selection	is required. Enter the sample rate of the analog channel here and counter data will be
		time synchronous to the analog data
		Signal Routing
11	Source_A	Displays the signal that is routed to Source_A (routing can't be edited in the
	selection	<i>Encoder</i> mode)
12	Source_B	Displays the signal that is routed to <i>Source_B</i> (routing can't be edited in the
	selection	<i>Encoder</i> mode)
13	HW Reset button	HW reset selection; If this option is selected, a second input <i>Source_Z</i> must be
		selected. <i>Source_A</i> channel is reset if the edge of <i>Source_Z</i> raises from 0 to 1
14	Source_Z	Displays the signal that is routed to Source_Z (only applicable if HW Reset is
	selection	selected, routing can't be edited in the <i>Encoder</i> mode)
15	SW Reset button	SW Reset selection; If this option is selected, Source_A is reset after the number of
		pulses entered in (7) is reached
16	Reset now button	If this button is pressed a manual hardware reset is forced
17	Invert channel	Inverts the respective input channel
	button	

Table 5-18: Menu of a Counter channel in the Encoder mode

Remark: An automatic Counter Reset at Recording Start is not supported

5.6.5 DIGITAL FILTER OF A COUNTER CHANNEL (EXTRACT FROM THE TRIONTM MODULE TECHNICAL REFERENCE MANUAL)

Each counter and digital input has a digital filter, which can be set to various gate times. If the gate time is set to "Off", no filter is on the input signal. The filter circuit samples the input signal on each rising edge of the internal time base. If the input signal maintains his state for at least the gate time, the new state is propagated. As an effect the signal transition is shifted by the gate time. Figure 5-85 demonstrates the function of the filter.

Figure 5-85: Digital filter

The intent of the filter is to eliminate unstable states, e.g. glitches, jitter... which may appear on the input signal, as shown in Figure 5-86.

Figure 5-86: Input signal with chatter

It can be chosen between eight filter settings: Off, 100 ns, 200 ns, 500 ns, 1 μ s, 2 μ s, 4 μ s and 5 μ s. Two examples of filter settings are described. The 100 ns filter will pass all pulse widths (high and low) that are 100 ns or longer. It will block all pulse widths that are 75 ns or shorter. The 5 μ s filter will pass all pulse widths (high and low) that are 5 μ s or longer and will block all pulse widths that are 4.975 μ s or shorter. The internal sampling clock (time base) is 80 MHz, so the period time amounts 12.5 ns. Pulse widths between gate time minus two internal time base period times may or may not pass, depending on the phase of the input signal with respect to the internal time base.

Properties of all filter settings:

Filter settings	Pulse width to pass	Pulse width to be blocked
100 ns	100 ns	75 ns
200 ns	200 ns	175 ns
500 ns	500 ns	475 ns
1 µs	1 µs	975 ns
2 µs	2µs	1.975 µs
4 µs	4 µs	3.975 µs
5 µs	5 µs	4.975 µs
Off	-	-

Figure	5-87:	Filter	Gate	Times
--------	-------	--------	------	-------

5.6.6 SUPPORTED COUNTER SENSORS

Due to the software and TRIONTM-hardware possibilities, OXYGEN supports three different types of counter sensors: Tacho sensors, CDM+Trigger sensors and Encoder sensors. The following table provides an overview about the possibilities and differences of the different types of sensors:

	Mounting	Connect	Pulses	Frequency	Required Digital		Measurer	nent
					counter inputs	RPM	Angle	Direction
Tacho	Easy	Analog or adj. CNT	1	0.1 kHz	1	~	X	X
CDM+Trigger	Hard	CNT	360/720/xxx	125 kHz	2	✓	✓	X
Encoder	Hard	CNT	Up to 36000 and more	~100 kHz	3	~	✓	~

Table 5-19: Characteristics of Tacho, CDM+Trigger and Encoder sensors

5.6.6.1 Mandatory channel settings for Tacho sensors

AMPLIFIER OPTIONS	COUNTER GROUP SETTINGS
Mode Events 🍙	Type Rotation
Threshold 2.4	Pulses 1 pulses revolution
Retrigger 0.8 V	Resample rate 10000 Hz
Filter 0.1 us	
Coupling DC	
	SIGNAL ROUTING
	Source_A _Input_A Invert
	HW Reset SW Reset Reset now

Figure 5-88: Channel settings for a Tacho sensor

- Amplifier *Mode* must be set to *Events*
- *Threshold* and *Retrigger* Level must be adjusted depending on the sensor signal
- Number of *Pulses* must be set to 1 pulse /revolution
- Sensor signal must be routed to Source_A

5.6.6.2	Mandatory channel settings for CDM+Trigger sensors
---------	--

AMPLIFIER OPTIONS			COUNTER GR	OUP SETTINGS	
Mode	Events	A 1	Туре	Rotation	A
Threshold	2.4	V	Pulses	_ ³⁶⁰	pulses revolution
Retrigger	8.0	V	Resample rate	10000	Hz
Filter	0.1	us			
Coupling	DC	4			
			SIGNAL ROUT	TING	
			Source_A _Inp	ut_A	Invert
			🖌 HW Reset	SW Reset	Reset now
			Source_Z _Inp	ut_Z	🔺 Invert

Figure 5-89: Channel settings for a CDM +Trigger sensor

- Amplifier *Mode* must be set to *Events*
- Number of *Pulses* per revolution provided by the CDM signal must be entered
- Route the CDM signal to *Source_A* and the Trigger signal to *Source_Z* (*HW reset* must be enabled)
- Remark: The Amplifier Mode can also be set to Encoder. In this case, the same settings as in Figure 5-90 are mandatory. Please note that the routing of the Source_A and Source_B input cannot be changed!

AMPLIFIE	R OPTIONS	COUNTER GR	OUP SETTINGS	
Mode	Encoder 🔬	Туре	Rotation	A 1
Threshold	2.4 V	Pulses	L ³⁶⁰	pulses revolution
Retrigger	۷ 8.0 k	Mode	_X1	
Filter	0.1 US	Resample rate	10000	Hz
Coupling	DC 🚽			
		SIGNAL ROUT	FING	
		Source_A Inp	ut_A	Invert
		Source_B Inp	ut_B	Invert
		✓ HW Reset	SW Reset	Reset now
		Source_Z Inp	ut_Z	Invert
	Eiguro E. OO) Channal catti	nga for an Encodor concor	

5.6.6.3 Mandatory channel settings for Encoder sensors

- Figure 5-90: Channel settings for an Encoder sensor
- Amplifier *Mode* must be set to *Encoder*
- Number of *Pulses* per revolution provided by the *Input_A* and *Input_B* must be entered
- The counting mode X1, X2, X4 or A-Up/B-Down must be selected

5.7 CAN INPUT CHANNELS

5.7.1 LOADING THE DBC-FILE

To use an input channel as a CAN channel, make sure that the Channel Mode of the Analog Input is set to *CAN* (see Figure 5-91). When this is done, the Analog channel is automatically deactivated and the CAN channel (which can be found below the Analog channels as a separate CAN channel like in Figure 5-91) can be activated.

		Al 4/1 Sim	TRION-2402-MULTI-4-D	¢	used as CAN	CAN
		Al 4/2 Sim	TRION-2402-MULTI-4-D	@	0.009489 A	VG Tomperature
		Al 4/3 Sim	TRION-2402-MULTI-4-D	٢	-6.019100 A	VG 10 Retentionator
		Al 4/4 Sim	TRION-2402-MULTI-4-D	÷	-7.603820 A	VG Potentiometer
		CAN 4/1 Sim	TRION-2402-MULTI-4-D	÷		
	Video C	hannels				CAN
						Current

Figure 5-91: Enable CAN-channels

After that, a dbc-file can be loaded via the button *Load DBC* in the Channel Setup of the respective CAN channel (see Figure 5-92). The button *Clear all* deletes the loaded dbc-file again.

Figure 5-92: CAN-Channel Setup – Overview

After loading the dbc-file, the CAN channels will appear in the Channel List (see Figure 5-93) and can be activated.

CAN		Search		, 🍢 📲 CAN	
>	$\ \mathbf{x}\ $	Active	Stored	Channel	Color
~			0	CAN 4/1 Sim CAN 4/1 TRION-2402-MULTI-4-D	
~				PPS CAN MESSAGE	
			۲	PPS CAN SIGNAL	
\mathbf{r}				Sats_Time_Latit CAN MESSAGE	
			0	CAN SIGNAL	
				CAN SIGNAL	
-			0	CAN SIGNAL	
\geq				CAN MESSAGE	
				CAN SIGNAL	-
				CAN SIGNAL VertVel Accel tAccel Status	
~				CAN MESSAGE	
					-
				CAN SIGNAL	-
				CAN SIGNAL Mark input	
				CAN SIGNAL	
				CAN SIGNAL East West	-
				CAN SIGNAL South North	-
				CAN SIGNAL Dist_Vel_Heading	
Ě				CAN MESSAGE Distance	
				CAN SIGNAL Velocity	
				CAN SIGNAL Heading	
			0	CAN SIGNAL Mark	
				CAN MESSAGE Mark_s	
				CAN SIGNAL Mark_100ns	
10 Bill				CAN SIGNAL	-

Figure 5-93: CAN channel list

Remark: To view the loaded messages and signals, you have to open the tree of the CAN Port.

5.7.2 SELECTING THE CAN-CHANNEL TIMEBASE

There are different possibilities, how timestamps are generated for the CAN Messages.

CAN 2/1 TRION3-1	CAN 2/1 Sim	
PORT CONF	IG	
Baud rate	500000	Baud 🔺
Listen only	False	
Termination	False	_
Timestamp	AD Sample Rate	4
Load DD	10 MHz	
LOAD DB	AD Sample Rate	
FRAME PRE	1000000	
	8000000	
Message ID:	5000000	
7 6	4500000	

Figure 5-94: Timestamp Selection in the CAN channel menu

- Each CAN input channel on a TRIONTM module has a 10 MHz timing clock integrated. If *10 MHz* is selected in the Timestamp dropdown menu in the CAN Channel Setup (see Figure 5-94), the data received by the CAN channel is clocked by using this timing source. The accuracy will be 100ns.
- If AD Sample Rate is selected in the Timestamp dropdown menu in the CAN Channel Setup (see Figure 5-94), the data received by the CAN channel is clocked by using this timing source as well. Within OXYGEN the timestamp which is assigned by the 10 MHz timing clock is rounded to the closest timestamp of the sample rate of the Analog input channel. (i.e. CAN-time stamp: 0.0038743s is rounded to 0.0039s of the analog channel with 10 kHz sample rate). If several TRIONTM-modules with different sample rates are used, the highest sample rate is used.

• Select any other Timestamp sample rate, to bind the timestamps to an explicit rate.

All options other than *10 MHz* are mainly required for data export when analog and CAN data channels are exported simultaneously. If the *10 MHz* timing source was used for recording data, each CAN data sample is written to a separate line due to the higher timing accuracy. Figure 5-95 will clarify that. If the *AD Sample Rate* timing source was used for recording data, each timestamp of the CAN data is rounded, and the CAN data sample is exported to the line of the analog data which is has the closest timestamp. Figure 5-96 will clarify that.

1	Time [s]	Analog_Channel [V]	CAN_10_MHz	z_Sample_Ra	te [deg C]
38	0.0036	0.002324581			
39	0.0037	0.002586842			
40	0.0038	0.001895428			
41	0.0038743		23.5435791		

Figure 5-95: CAN data export with 10 MHz timebase. Each CAN data sample is written to a separate line

1	Time [s]	Analog_Channel [V]	CAN_channel_AD_	Sample_Rate [deg C]
29	0.0027	0.002026558		
30	0.0028	0.001096725		
31	0.0029	0.002622604		
32	0.003	0.002110004		
33	0.0031	0.001978874	23.86929321	

Figure 5-96: CAN data export with AD Sample Rate timebase. Each CAN datapoint is written to the line of the analog data sample which has the closest timestamp

For detailed information about the data export, please refer to section 9.

5.7.3 TRANSMITTING MEASUREMENT DATA VIA CAN

Please note that this is an optional feature and requires a license.

It is not only possible to receive and decode CAN-Messages, it is also possible to transmit selected Oxygen measurement channels cyclically over the CAN-Bus. Each CAN-Message can be individually set to be received or transmitted.

CAN S	IGNAL	Analog_10Hz_INT	~	<< >	×
MESSAGE S	ETUP	CHANNEL SETUP			
Message ID	0x3	GENERAL	DBC SC	CALING	
Туре	STANDARD	Data format INTEL	Scale (k	factor) 0.001	
DLC	8	Data typeSIGNED_INTE	GER Offset	0	ī
Mode	Transmit	Start bit 0			
Out frequenc	v 10	Hz Length 16			
Out delay	70	Signal type REGULAR	TRANS	MISSION SETTING	s
			Channel	AI 1/U3	Χ.
PREVIEW		PREVIEW			
7 8	5 4 3 2	5.767		NaN V MA	x NaN V
1 15 14	3 4 3 2	1 0 M		AC	RMS

Figure 5-97: Timestamp Selection in the CAN channel menu

- Message dependent Settings
- MODE: Select Transmit-Mode, if you want to transmit measurement data within this message
- Out frequency: Set the cyclic output frequency, allowed range is 0.1 to 100 Hz
- Out delay: Set an additional delay, to get smoother output due to block-wise operation
- Signal dependent Settings
- Channel: Drop the channel here, which should be transmitted

Additional Information

Message and Signal Encoding

The signals are encoded with the data type and length defined in the DBC-file. If the channel has a value higher (or lower) than the possible range, the max (or min) value will be transferred. Please make sure, you selected the right range and resolution for the specific channel not to lose information.

- No channel assigned to a signal: the value 0 (Zero) is transmitted
- Channel data is NaN: NaN is transmitted in case of float or double, 0 is transmitted in all other cases
- Delay settings

To tune the responsiveness and the signal quality of the transmitted data, we introduced the *Out delay*. This is the time, which the data is delayed before sent. The following graphs show the difference between two individual settings:

Figure 5-98: Blue: Analog Input; Green: CAN-Output with a delay of 70ms (default value)

Remark: This function requires a compatible hardware, at time of publishing of this manual, all TRION-Based CAN interfaces were supporting this feature.

5.8 GPS-CHANNELS

The following GPS data channels can be acquired by a TRION[™]-TIMING or TRION[™]-VGPS-20/-100 module:

Default Channel	Channel	Channel description	Range	Unit	Data Type	Scaling
Name	Mode					available
GPS	NMEA	GPS NMEA channel	-	-	String	X
Latitude_GPS	Latitude	Current latitude of the object	-90° 90°	0	Double	✓
Longitude_GPS	Longitude	Current longitude of the object	-180° 180°	0	Double	✓
Altitude_GPS	Altitude	Current altitude of the object	-100m 1000m	m	Double	✓
Velocity_GPS	Velocity	Current velocity of the object	0 km/h 300 km/h	km/h	Double	✓
Heading_GPS	Direction	Current heading of the object	0° 360°	0	Double	✓
Satellites_GPS	Satellites	Number of satellites in view	0 24	-	Double	X
Fix Quality_GPS	Quality	GPS Fix Quality	-	-	String	X
H. Dilution_GPS	HDOP	2D deviation of longitude and latitude	0m 100m	m	Double	✓
SoD_GPS	Second	Current second of the day	0s 86400s	m	Double	X
Date_GPS	Date	Current date in the format yyy-mm-dd hh:mm:ss:ms	-	-	String	X
Acceleration_GPS	Acceleration	Current acceleration of the object	-1000 m/s ² 1000 m/s ²	m/s ²	Double	✓
Distance_GPS	Distance	Distance covered from start of measurement	0m 1000000m	m	Double	 ✓

Table 5-20: Available GPS channels

Default Channel	Acquired from	Calculated	Calculation
Name	TRION TM	channel	
	hardware		
GPS	✓	X	-
Latitude_GPS	✓	X	-
Longitude_GPS	\checkmark	X	-
Altitude_GPS	✓	X	-
Velocity_GPS	\checkmark	X	-
Heading_GPS	\checkmark	X	-
Satellites_GPS	✓	X	-
Fix Quality_GPS	\checkmark	X	-
H. Dilution_GPS	\checkmark	X	-
SoD_GPS	\checkmark	\mathbf{X}	-
Date_GPS	\checkmark	X	-
Acceleration_GPS	\mathbf{X}	✓	Differentiation of channel Velocity_GPS
Distance_GPS	\mathbf{X}	 ✓ 	Integration of channel Velocity_GPS

Table 5-21: GPS - channel type

Remarks:

- The ranges of the channels are defined per default and have the purpose to define a min/max value if the channels are displayed in an Instrument. The ranges are neither minimum nor maximum limits. Thus, the defined ranges can be overrun and underrun without "clipping".
- Channels of data type *double* with physical unit can optionally be scaled (see (7) in Figure 5-2). This option might be used for changing the physical channel unit from (kilo)meters to miles or km/h to mph.
- Channels of data type *double* can be assigned to mathematical formulas (see section 5.3.1) or statistics calculations (see section 5.3.3).
- GPS channels cannot be filtered (see section 5.3.5) as these channels are asynchronous channels.
- During the measurement it might happen that the GPS Fix Quality is not fix all the time (i.e. GPS connection is lost during a ride through a tunnel). If this happens, the last value of the GPS channels will be hold until the GPS Fix Quality will be fix again and a new value is received.
- If the GPS Fix Quality is not fix for more than 60 seconds, the calculated channels Acceleration_GPS and Distance_GPS will change to NaN until the GPS Fix Quality is fix again.
- The GPS Fix Quality is fix if the channel receives 1 (GPS fix), 2 (Differential GPS fix), 3 (PPS fix), 4 (Real Time Kinematic) or 5 (Float RTK). The GPS Fix Quality is not fix if the channel receives 0 (Fix not available), 6 (Estimated (dead reckoning)), 7 (Manual input more) or 8 (Simulation mode)

Default Channel Name	GPS	Analog Meter	Recorder	Table	Scope	XY plot
	plot	Digital Meter	Chart Recorder			
		Bar Meter				
		Indicator				
GPS*	X	X	X	✓	X	\mathbf{X}
Latitude_GPS	✓	\checkmark	\checkmark	✓	✓	\checkmark
Longitude_GPS	\checkmark	✓	✓	~	✓	\checkmark
Altitude_GPS	X	✓	✓	✓	✓	\checkmark
Velocity_GPS	X	\checkmark	\checkmark	✓	✓	\checkmark
Heading_GPS	\checkmark	✓	✓	~	✓	\checkmark
Satellites_GPS	X	\checkmark	\checkmark	✓	✓	\checkmark
Fix Quality_GPS	X	X	X	~	X	\mathbf{X}
H. Dilution_GPS	X	✓	✓	~	✓	\checkmark
SoD_GPS	X	✓	\checkmark	✓	✓	\checkmark
Date_GPS	X	X	X	~	X	\mathbf{X}
Acceleration_GPS	X	✓	✓	~	✓	\checkmark
Distance_GPS	X	\checkmark	✓	✓	✓	\checkmark

The individual channels can be assigned to the following Instruments:

Table 5-22: GPS channels – compatible instruments

*The channel *GPS* can be dragged and dropped directly from the Channel List to the measurement screen. If this is performed, the current value of the channels *Latitude, Longitude, Altitude, Velocity, Heading, Satellites used, Quality* and *Dilution* will be displayed (see Figure 5-100).

Figure 5-100: Drag and drop the GPS channel to the measurement screen

Remark: During GPS-channel analysis in *PLAY* mode, the GPS channels can also be exported to *.txt, *.csv, *.mdf4 or *.mat format (see section 9). Please note that GPS-Channels of data type *String* can only be exported to *.txt or *.csv format as the data type is not supported for *.mdf4 and *.mat format.

5.9 CURRENT MEASUREMENT USING TRIONTM MODULES

Different TRIONTM modules can be used for current measurement. Current signals can be connected directly to TRION-1603-LV-6-L1B, TRION-1620-LV-6-L1B and TRION-1620-ACC-6-L1B modules and measure the current via an integrated 10 Ω shunt resistor.

Other modules can also be used for current measurements but need an external shunt resistor to support this functionality. These modules are the following: TRION-1603-LV-6-BNC, TRION-1620-LV-6-BNC, TRION-1620-ACC-6-BNC, TRION-1820-dLV, TRION-1600-dLV and TRION-2402-x. The TRION-1820-PA module is excluded from this consideration.

Modules that require an external shunt resistor for the current measurement contain a predefined shunt resistor selection in the Channel List (see Figure 5-101) if *Current Amplifier Mode* is selected.

CURRENT SE	TTINGS		
Input Type	Single-ended		
Shunt Resistor	Shunt 1	50	Ohm 📕
Pmax / Imax	0.25	W70.71	mA 🚽

Figure 5-101: External Shunt resistor selection in the Channel Setup

From the technical point of view, the current measurement via an (external) shunt resistor is the measurement of the potential difference that is caused by the current on the shunt resistor.

$$I = \frac{U}{R}$$

The voltage *U* is measured, the resistance *R* is known and therefore the Current *I* can be determined. Thus, if the current is measured via an external shunt, a voltage signal representing the potential difference caused by the current on the external shunt is provided to the TRION-module. This voltage is rescaled to the current again by using the formula above. This rescaling is done by OXYGEN. Therefore, the resistance must be known and can be selected in the dropdown list from Figure 5-101. For sure, any shunt resistor can be used and not the ones contained in the dropdown list. If a shunt is used whose resistance is not contained in the list, the rescaling of the voltage signal representing the current can be done manually in *Voltage* Amplifier mode proceeding the following steps: • Set the Amplifier Mode to Voltage (see Figure 5-102):

AMPLI	FIER OPTIONS
Mode	Voltage
Figure	5-102: Voltage measurement mode

 Change the Unit to A(mpere) and enter the resistance of the shunt resistor as Scaling factor, i.e. 50 Ω (see Figure 5-103).

SENSOR	SCALI	NG	
Scaling	2-р	oint	
• Sca	ling	O Sensitivity	
Unit	A		
Scaling	50		A/V

Figure 5-103: Entering the shunt resistance as scaling factor

With these settings, the rescaling of the voltage signal to the represented current is done in the same manner as in Current mode with the corresponding shunt resistor selected in the dropdown list. Thereby, the voltage signal is multiplied with the entered *Scaling* factor and the result of this equation is the corresponding current:

Corresponding Current I = Scaling Factor R * Measured Voltage U

Considering the physical units of this equation will clarify that:

$$[A] = \left[\frac{A}{V} * V\right]$$

If a TRION module with integrated 10 Ω shunt is used for the current measurement, this consideration can be neglected! This applies only for current measurements via external shunt resistors!

5.10 SELECTING MULTIPLE CHANNELS

Inside the *Data Channels* menu, the user can select multiple Input channels through various methods. With multiple channels selected, the user can address changes in Channel Settings to multiple channels at one time.

To select multiple channels:

- Select a channel using the system graphic in the upper left-hand corner of the Data Channels menu
- Select a check box on the left edge of the individual Data Channels menu adjacent to each individual channel
- The user can also just simply click onto the channel row itself and select several channels by keeping the CTRL key pressed

1 2 3 4									
All	Active	Yx	Color Setup	Scaled Value	« cerementer de la companya de la co	Sample Pate	Pange		Scaling +
		Al 2/1 Sim		-0.403012 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1	Unit: V
		AI 2/1 TRION-2402-dACC-6-BNC AI 2/2 Sim		-0.017185 AVG	Voltage	10000 Hz	-100 V 100 V	Offset: 0 Scale: 1	Unit: V
		AI 2/2 TRION-2402-dACC-6-BNC AI 2/3 Sim		-20.168004 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1	Unit: V
		AI 2/3 THION-2402-0ACC-6-BNC AI 2/4 Sim		-68.033598 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1	Unit: V
		Al 2/5 Sim		-11.966405 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		AI 2/6 Sim		50.083988 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		Al 3/1 Sim Al 3/1 TRION-1620-LV-6-BNC	۰	-0.509185 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		AI 3/2 Sim AI 3/2 TRION-1620-LV-6-BNC	ø	0.221553 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		AI 3/3 Sim AI 3/3 TRION-1620-LV-6-BNC	a	-19.992004 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		AI 3/4 Sim AI 3/4 TRION-1620-LV-6-BNC	\$	-67.998398 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		AI 3/5 Sim AI 3/5 TRION-1620-LV-6-BNC	¢	-12.001605 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		AI 3/6 Sim AI 3/6 TRION-1620-LV-6-BNC	•	49.995988 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		AI 4/1 Sim AI 4/1 TRION-1603-LV-6-L1B	¢	-0.509161 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		AI 4/2 Sim AI 4/2 TRION-1603-LV-6-L1B	¢	0.221543 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		AI 4/3 Sim AI 4/3 TRION-1603-LV-6-L1B		-19.991688 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		AI 4/4 Sim AI 4/4 TRION-1603-LV-6-L1B	¢	-67.997372 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		AI 4/5 Sim AI 4/5 TRION-1603-LV-6-L1B		-12.001415 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V
		AI 4/6 SIM AI 4/6 TRION-1603-LV-6-L18	\$	49.995238 AVG	Voltage	10000 Hz	-100 V 100 V	Offset: 0	Unit: V
		DI 1/1 SIM DI 1/1 TRION-TIMING	•	0.499600 AVG	DI	10000 Hz	01		
		DI 1/2 SIM DI 1/2 TRION-TIMING	\$	0.500400 AVG	DI	10000 Hz	01		
		UI 1/3 SIM	205	0.499000 AVG	ni	10000 H+	0 1		
E		₩	Zero	Reset Ze	ro	Bridge Balance	Shunt On		Short On

Figure 5-104: Selection of several channels

Remark: It is also possible to Copy (CTRL+C) and Paste (CTRL+V) the settings between identical input channels

5.11 CHANNEL LIST FILTERING OPTIONS

As explained in Table 5-1, the user can filter the channels according to their channel type and to their channel name. There are additional filtering options available which are explained in the following sections.

5.11.1 FILTERING BY THE ACTIVE COLUMN

- Fully open the *Data Channels* menu
- Left click onto the *Active* column header
- A sorting menu will appear which allows the user to sort from A to Z, Z to A, or by true or false
- Sorting by *true* or *false* will sort your channels by whether your channels or active (true) or inactive (false)
- The user can either left click onto the *true* or *false* buttons themselves, or the user can simply type *true* or *false* within the menus text field
- Selecting *true* will present the user only the activated channels. Likewise, if the user selects *false* only the inactive channels will be presented.
- Delete an active filter with the *Clear filter* button again (see (4) in Table 5-1)

Figure 5-105: Filtering by the Active Column

5.11.2 FILTERING BY THE *CHANNEL* COLUMN

- Fully open the *Data Channels* menu
- Left click onto the *Channel* column header
- A sorting menu will appear which allows the user to sort by channel name from A to Z, Z to A. The user can also isolate a specific channel by name or name prefix such as AI or DI.
- The user can either left click onto a channel name button, or the user can simply type a channel name within the menus text field. This may seem like a difficult task, but the software will automatically update the channel list as you type.
- Selecting a specific channel name such as "My Channel 1", will only present the user with that specified channel. This makes searching for channels efficient, easy, and effective.
- Delete an active filter with the Clear filter button again (see 4) in Table 5-1)

Figure 5-106: Filtering by the Channel Column

5.11.3 FILTERING BY THE MODE COLUMN

- Fully open the *Data Channels* Menu
- Left click onto the *Mode* column header
- A sorting menu will appear which allows the user to sort by Mode name from A to Z, Z to A, or by clicking on a Mode name
- The user can either left click onto a Mode name button, or the user can simply type a Mode name within the menus text field. The software will automatically update the Mode list as you type.
- Selecting a specific Mode name such as *Temperature* will only present the user with those specified channels. This makes searching for channels efficient, easy, and effective.
- Delete an active filter with the *Clear filter* button again (see (4) in Table 5-1)

Figure 5-107: Filtering by the Mode Column

6 INSTRUMENTS AND INSTRUMENT PROPERTIES

6.1 Adding an Instrument to the Measurement Screen and Channel Assignment

Figure 6-1: Adding Instruments to the measurement screen

To add an Instrument to the measurement screen, the user must click on the *Instruments* menu and open it while a measurement screen is open. Select the desired Instrument by clicking on it (1), move it to the measurement screen by keeping the mouse button pressed (2) and place it wherever you like by releasing the mouse button (3). In the example of Figure 6-1, an Analog meter is added to the measurement screen. The Instruments are aligned to the grey grid in the screen background. The *Design* mode is automatically activated when an Instrument is added to the measurement screen. The user can see that the *Design* mode is activated because of the blue background of the *Design* mode button (4) and because of the grey grid in the background of the measurement screen.

In the *Design* mode, the user can now change the size of the Instrument by moving the black corners of the Instrument or change the position of the Instrument by grabbing it at the blue frame.

Remarks:

Several Instruments on the screen can be selected by drawing a selection rectangular with the left mouse button like it is known from Windows Explorer or similar (see Figure 6-2) or by keeping CTRL+SHIFT pressed while selecting the Instruments. All Instruments on a measurement screen can be selected by pressing CTRL+A.

Figure 6-2: Selection of several Instruments in the Design Mode

It is possible to activate the Design mode in the LIVE mode as well as in the REC mode and in the PLAY mode.

To assign a data channel to an Instrument, the user can select the desired channel in the *Data Channel* menu (5) by just clicking on it when the respective Instrument is selected in the measurement screen. The functionality and properties of the individual Instruments will be explained in the following sections in detail.

As explained above, the user can add and modify the instruments on the measurement screen when the *Design* mode is activated. The user can also delete Instruments from the screen by selecting them and clicking on the rubbish bin (6) next to the Instruments menu or by grabbing the respective Instrument and move it to the rubbish bin or by selecting the Instrument and pressing the **DEL**-key. To exit the *Design* mode again, the user must click on the *Design mode* button and the grey grid on the background of the measurement screen will disappear. The *Clear* button (7) will erase all Instruments from the currently displayed measurement screen. The *Clear All* button (8) will erase all Instruments from all measurement screens.

!!! Warning: Pressing the Clear and the Clear all button can NOT be reverted!!!

6.2 ANALOG METER

Figure 6-3: Analog Meter - Overview

The Analog meter can be set up in quite a few different ways. The screen capture to the right shows the various customizable Instrument Properties for this display and they are as follows:

• Four different visualization options for the indicator:

Figure 6-4: Analog Meter - Visualization options

- Range settings: The user has the options of using auto range or a user defined range.
- Limits: Allows users to color the dial based on different limit values. The user also has the option to colorize the indicators needle which helps in identifying signals which have hit a limit. This is illustrated in the screen capture.
- Display Value: The Instruments displays either the actual channel value or the Average, RMS, ACRMS, Min, Max or Peak2Peak value at a user defined time interval of 0.1s, 0.25s, 0.5s, 1.0s.
- Style: The user can specify the number of columns for an Analog meter cluster if several channels are selected.
- Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*).

Remark: Up to 96 channels can be assigned to one single Analog Meter.

6.3 DIGITAL METER

Figure 6-5: Digital Meter – Overview

The Digital meter provides the user with the ability to definitively and quickly see what is going on with a measurement channel. This capability is further enhanced with the following list of features:

- Limits: Allows users to color the Digital meters' text based on different limit values. This really helps in identifying signals which have hit a limit when the display is very "busy". This is illustrated in the screen capture.
- Number Format: This option gives the ability to either display the shown values in Scientific or Decimal format.
- Display Value: The Instrument displays either the actual channel value or the Average, RMS, ACRMS, Min, Max or Peak2Peak value at a user defined time interval of 0.1s, 0.25s, 0.5s, 1.0s.
- Style: The user can specify the number of columns for a Digital meter cluster if several channels are selected.
- Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*).

Remark: Up to 96 channels can be assigned to one single Digital Meter.

6.4 RECORDER

Figure 6-6: Recorder - Overview

This Instrument replicates the functionality of a strip chart recorder in combination with many additional features.

Remarks:

- Up to 8 channels can be assigned to one single Recorder.
- If two or more Recorders are placed below each other and their boundaries are touching each other on more than 2/3 of the Recorder length, the Recorders are *locked*. This means that zooming actions applied to one Recorder apply to the other *locked* Recorders as well.

6.4.1 INSTRUMENT PROPERTIES

The following properties can be manipulated via the Instrument Properties menu:

- Time Axis: This property changes the format of the X-Axis. The user can select between *Auto*, *Absolute time* and *Relative time*.
 - *Auto*: In Sync Mode, the Auto time format is the Absolute time, otherwise the Auto time format is the Relative time
 - o Absolute time: The unit of the X-Axis is the actual time of day set in the OS settings

- *Relative time*: The unit of the X-Axis is the relative time starting with 0:00 for every new measurement
- Cursors: Select the individual parameters that are calculated when the cursors are used. For the detailed cursor description please refer to section 6.4.2.3.
- Value Axis: This property allows the user to specify the range on the Y-Axis.

When the option *Individual Scaling* is selected, the scaling can be changed individually per channel and each channel will have an own Y-Axis. If it is deselected, all channels will have one common Y-Axis. For further scaling details, please refer to section 6.4.2.2.

If *Automatic Scaling* is selected, the Y-Axis will always be adjusted to the actual displayed data minimum and maximum.

Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*)

6.4.2 ADDITIONAL PROPERTIES

To use further functionality of this instrument, the *Design* mode must be left. The following additional features are available:

- 1. Quick selection X-Axis scaling
- 2. Quick selection Y-Axis scaling
- 3. Activate Cursors
- 4. Quick expansion button

6.4.2.1 Quick selection X-Axis scaling

This property menu appears via left click or touch and hold the X-Axis of the recorder. By dragging your clicked mouse cursor or your finger into one of these menu fields and releasing you will select a new range setup. The user can select the following options:

• Full: Sets the time axis of the recorder to the total elapsed recording time

Remark: By one right click on the X-Axis, the total elapsed recording time will be displayed as well:

Figure 6-9: Changing the X-Axis scaling to the full time with one right click

- 1 min: Sets the time axis of the recorder to a one-minute window of the current recording time
- 1 h: Sets the time axis of the recorder to a one-hour window of the current recording time
- 12 h: Sets the time axis of the recorder to a twelve-hour window of the current recording time. If your current recording duration is below twelve hours, you will see negative time within your recorder if *Relative time* is selected in the *Time Axis* properties.
- Custom...: Possibility to select an individual time window:

Range	start				
0	h :	0	m j	24.964	s
Duratio	'n				
0	h,:	0	m	1.799	S

Figure 6-10: Window to define a customized X-Axis scaling

Useful Shortcuts:

- Scrolling with the mouse wheel will zoom into the X-Axis
- Pressing the **Shift** key while scroll zooming will accelerate your zooming speed
- Right clicking and dragging across the Recorder will allow the user to zoom into a specific region of the recorder (only available during recording or in *freeze* mode)
- Performing a single right click will un-zoom the users Recorder instrument one step at a time

6.4.2.2 Quick selection Y-Axis scaling

This property menu appears via left click or touch and hold the Y-Axis of the recorder. By dragging your clicked mouse cursor or your finger into one of these menu fields and releasing, you will select a new range setup. The user can select the following options:

- Overall min/max: Will set the range of all channels in the recorder to min/max value range of the highest signal amplitude displayed in the recorder
- Overall full range: Sets the range of all channels in the recorder to the specified range of the channel with the highest range settings.

Remark: This Scaling option is also accessible by pressing the **CTRL** key and clicking on a channel name.

Individual full range (Only available when *Individual scaling* is selected in the Instrument Properties): Sets the range of all channels assigned to the recorder to their individual full range values.

- Individual min/max (Only available when *Individual scaling* is selected in the Instrument Properties): Sets the range of all the channels assigned to the recorder to their own individual min/max values.
- A click on the individual channel name will only set the selected channel to its individual min/max value. This scaling option is also possible by clicking on the channel name on the Y-Axis
- Custom... (Only available when *Individual scaling* is not selected in the Instrument Properties): Possibility to define a customized range for the Y-Axis that will affect all plotted signals:

4aximum va	lue	
100		Ē
/inimum val	ue	
/linimum val -100	ue	
4inimum val	ue	1

Figure 6-11: Window to define a customized Y-Axis scaling (Individual Scaling selected)

Example: Two channels are displayed in one Recorder. Channel 1 has a Signal Input Range of $\pm 10V$ and the range of the currently displayed data is $\pm 8V$. Channel 2 has a Signal Input Range of $\pm 3V$ and the range of the currently displayed data is $\pm 2V$.

- Clicking on *Overall min/max*: The scaling of both channels is set to ±8V
- Clicking on *Overall full range*: The scaling of both channels is set to ±10V.
- Clicking on *Individual full range*: The scaling of channel 1 is set to ±10V and the scaling of channel 2 to is set to ±3V
- Clicking on *Individual min/max*: The scaling of channel 1 is set to ±8V and the scaling of channel to is set to ±2V
- Clicking on the name of Channel 1
 - will set the scaling of Channel 1 to ±8V and not affect the scaling of Channel 2 if Individual scaling is selected
 - \circ will set the scaling of the Y-Axis to ±8V if *Individual scaling* is de-selected
- Clicking on the name of Channel 2
 - will set the scaling of Channel 2 to ±2V and not affect the scaling of Channel 1 if Individual scaling is selected
 - \circ will set the scaling of the Y-Axis to ±2V if *Individual scaling* is de-selected

Remark: When *Individual scaling* is selected, the *Custom...* option will not be available by clicking on the Y-Axis and keeping the mouse button pressed. To enter this popup window when *Individual scaling* is selected, click on the min/max value of the Y-Axis scaling:

Y Axis Scaling Maximum value -100 Infinity
100.000 Minimum value -Infinity 100 -100.000
+/-1 +/-10 +/-100
Cancel Ok

Figure 6-12: Define a customized Y-Axis scaling for one channel (Individual Scaling not selected)

If several channels are displayed and the scaling of all channels shall be set to the same range, click on the min/max scaling of one channel while keeping the **CTRL** key pressed and the scaling menu will appear as well. In this case the settings will be assigned to all displayed channels:

Figure 6-13: Define a customized Y-Axis scaling for all channels (Individual Scaling not selected)

Useful shortcuts:

- Pressing the **CTRL** key while scrolling with the mouse wheel will zoom into the Y-Axis.
- Pressing the **Shift** key while scroll zooming will accelerate your zooming speed
- Right clicking and dragging across the Recorder will allow the user to zoom into a specific region of the recorder (only available during recording or in *freeze* mode and if *Automatic Scaling* is <u>not</u> selected)
- Performing a single right click will un-zoom the users Recorder instrument one step at a time
- Right clicking on a channel along the Y-Axis will set the channels' maximum and minimum value to the channels full range which is dictated in that channel's setup page

6.4.2.3 Activate Cursors

This option is only available in the *PLAY* mode or if the measurement screen is frozen. After activating the cursors, cursor *A* and *B* will appear in the recorder window and a table that contains the actual position of both cursors, the respective signal value on the cursor positions and the difference *Delta* between the cursor positions will appear below the Recorder (see Figure 6-14).

 $Delta = Time_{CursorB} - Time_{CursorA}[s]$

The position of the cursors can be changed by moving them to the left and right. Additional information can be displayed in the table by selecting it in the *CURSORS* section in the Instrument Properties. The additional values are the following:

And cursor B Max: Displays the maximum signal level between cursor A and cursor B

$$Max = Max{SignalLevel_i} [Signal Unit]$$

• Avg: Calculates the arithmetic mean value respecting the signal level from cursor A to cursor B according to the following formula:

$$Avg = \frac{1}{N} \sum_{i=1}^{N} SignalLevel_i \ [Signal Unit]$$

Slope: Calculates the slope of the signal between cursor A and cursor B according to the following formula:

$$Slope = \frac{SignalLevel_{CursorB} - SignalLevel_{CursorA}}{Delta} \left[\frac{Signal \ Unit}{s}\right]$$

Min: Displays the minimum signal level between cursor A and cursor B

$$Min = Min\{SignalLevel_i\}$$
 [Signal Unit]

RMS: Calculates the quadratic mean value respecting the signal levels from cursor A to cursor B

$$RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (SignalLevel_i)^2 [Signal Unit]}$$

• Frequ.: This value is the reciprocal value of *Delta*.

$$Frequ := \frac{1}{Delta} \ [\frac{1}{s} = Hz]$$

Integral: Calculates the area within the Y-Axis and the signal from cursor A to cursor B according to the following formula:

 C/D-cursors: Adds two additional cursors that can be moved vertically (not available for a Chart Recorder)

 $\label{eq:cursorA} Time_{cursorA}...\ Instant of time at position of cursor A\\ Time_{cursorB}...\ Instant of time at position of cursor B\\ SignalLevel_{cursorA}....\ Level of the signal at position of cursor A\\ SignalLevel_{cursorB}...\ Level of the signal at position of cursor B\\ SignalLevel_{i....}\ Signal level at position i between cursor A and B\\ i = 1...N\\ i = 1 =: Cursor A\\ i = N =: Cursor B\\ \end{tabular}$

The following example of a 0.5 Hz sine wave that was sampled with 10 Hz will demonstrate the calculations:

Figure 6-15: 0.5 Hz sine wave in a Recorder; Cursor A @ 0.1s and cursor B @ 2.0s

In table format, the signal looks as follows:

i = 120; N = 20		Time [s]	Sine 0.5 Hz [V]	
Cursor A	1	0.1	0.309017	
	2	0.2	0.587785	
	3	0.3	0.809017	
	4	0.4	0.951057	
	5	0.5	1.000000	
	6	0.6	0.951057	
	7	0.7	0.809017	
	8	0.8	0.587785	
	9	0.9	0.309017	
	10	1.0	0.000000	
	11	1.1	-0.309017	
	12	1.2	-0.587785	
	13	1.3	-0.809017	
	14	1.4	-0.951057	
	15	1.5	-1.000000	
	16	1.6	-0.951057	
	17	1.7	-0.809017	
	18	1.8	-0.587785	
	19	1.9	-0.309017	
Cursor B	20	2.0	0.000000	

Table 6-1: 0.5 Hz sine wave sampled with 10 Hz in table format

In the following section, the values displayed with the cursors are calculated for this signal and can be compared with the OXYGEN results in Figure 6-15.

Delta:

$$Delta = Time_{CursorB} - Time_{CursorA} = 2.0s - 0.1s = 1.9s$$

Max:

The maximum value between cursor A and B is 1.0 V @0.5s

Avg:

$$Avg = \frac{1}{N} \sum_{i=1}^{N} SignalLevel_i =$$

 $= \frac{1}{20} * (0.309017 \text{ V} + 0.587785 \text{ V} + 0.809017 \text{ V} + 0.951057 \text{ V} + 1.000000 \text{ V} + 0.951057 \text{ V} + 0.809017 \text{ V} + 0.587785 \text{ V} + 0.307017 \text{ V} + 0.000000 \text{ V} + (-0.309017 \text{ V}) + (-0.587785 \text{ V}) + (-0.809017 \text{ V}) + (-0.951057 \text{ V}) + (-0.809017 \text{ V}) + (-0.809017 \text{ V}) + (-0.587785 \text{ V}) + (-0.309017 \text{ V}) + (-0.000000 \text{ V}) = 0.000000 \text{ V}$

Slope:

$$Slope = \frac{SignalLevel_{CursorB} - SignalLevel_{CursorA}}{Delta} = \frac{0.000000 V - 0.309017 V}{1.9 s}$$
$$= -0.162640 \frac{V}{s}$$

Min:

The minimum value between cursor A and B is 0.0 V @1.0s and 2.0s

RMS:

$$RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (SignalLevel_i)^2} =$$

$$\sqrt{\{\frac{1}{20}\sum_{1}^{20} [(0.309017 \text{ V})^2 + (0.587785 \text{ V})^2 + (0.809017 \text{ V})^2 + (0.951057 \text{ V})^2 + (1.000000 \text{ V})^2 \\ + (0.951057 \text{ V})^2 + (0.809017 \text{ V})^2 + (0.587785 \text{ V})^2 + (0.307017 \text{ V})^2 \\ + (0.000000 \text{ V})^2 + (-0.309017 \text{ V})^2 + (-0.587785 \text{ V})^2 + (-0.809017 \text{ V})^2 \\ + (-0.951057 \text{ V})^2 \text{dewe} + (-1.000000 \text{ V})^2 + (-0.951057 \text{ V})^2 \\ + (-0.809017 \text{ V})^2 + (-0.5877852 \text{ V})^2 + (-0.309017 \text{ V})^2 + (-0.000000 \text{ V})^2] \} \\ = 0.707107 \text{ V}$$

Frequ.:

$$Frequ \coloneqq \frac{1}{Delta} = \frac{1}{1.9} = 526.3 \text{ mHz}$$

Integral:

$$Integral = Avg * Delta = 0.000000 V * 1.9 s = 0 Vs$$

Remark: Besides the Recorder Instrument, the cursor option is also available for the Chart Recorder and the Scope.

6.4.2.4 Quick expansion button

This button enlarges the Recorder to the full size of the measurement screen and reduces it to its original size. When the Recorder is set to the full size, all other instruments will move to the background.

Remark: Besides the Recorder, the Quick expansion button is also available for the Chart Recorder, the Scope, the FFT, the Video and the XY Plot.

6.4.2.5 Pinch/Scroll zoom feature

The zoom feature is a fundamental tool for the usage of the Recorder. It offers the user the possibility to scrutinize the data easily in **real time**.

• Operating on a touch screen:

To perform this action with a touch screen, just do what you do with an everyday picture on your smart phone, pinch and zoom. Since the screen on a Trendcorder is so large, it is sometimes easier to use both hands to perform this action until you drill down into the finer data points.

Figure 6-16: Zooming on a touch screen

• Operating with a mouse:

To zoom into the data with a mouse simply scroll upwards with the mouse's scroll wheel or use the *right* mouse button in the following way:

6.4.3 DEJA VIEW[™]

While recording data, the user is free to use the Recorder to view data from the past, even during long duration recording. This feature is called Deja View^M. For activating this function, the user must click with the left mouse button in the recorder or touch the recorder with his finger and drag or swipe to the right. From this point the user is also free to pinch or scroll zoom into the data. To quickly get back to looking at the current data the user can simply press the grey >> symbol (see (2) in Figure 6-18) and

they will be snapped back into time with the current incoming data. This is one of the most **powerful** features of the OXYGEN software.

Figure 6-18: Operational Features of Deja View™

Operational features of Deja View[™] (see Figure 6-18)

- (1) Shows the part of the measurement file that is displayed in the recorder
- (2) After pressing this button, the recorder will jump to the actual position of the measurement file and show the latest recorded data
- (3) A right click on this button makes the recorder show the recorded data from the recording start to the actual time position on the right end of the recorder

Remark: The Deja View[™] feature can be enabled and disabled in the *System Settings* menu point *Advanced Setup* (see section 4.3).

6.5 CHART RECORDER

The Chart Recorder provides the user with the ability to view data together in one instrument as separate strip charts that are arranged one below the other. The Chart Recorder offers the same properties and analysis possibilities as the Recorder. For a detailed description please refer to section 6.4.

Remark: Up to 16 channels can be assigned to one single Chart Recorder.

6.6 BAR METER

Figure 6-20: Bar Meter - Overview

The Bar meter is an additional tool to show the user the measurement value of a channel. The following properties are available:

- Range: Allows the user to define the range of the Bar meter. There is also the option to auto range the meter based upon the input channels range setting.
- Limits: Allows users to color the Bar meter fill color based on different limit values. This helps in identifying signals which have hit a limit when the display is very "busy".
- Display Value: The meter shows either the actual channel value or the Average, RMS, ACRMS, Min, Max, Peak2Peak value at a user defined time interval of 0.1s, 0.25s, 0.5s, 1.0s.
- Style: The user can specify the number of columns for a Bar meter cluster if several channels are selected.
- Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*).

Remark: Up to 96 channels can be assigned to one single Bar Meter.

6.7 INDICATOR

Figure 6-21: Indicator – Overview

The Indicator can be used for a quick status overview feedback. Depending on the current channels' value, the Indicator changes its color. The following Indicator properties can be configured:

- Limits: The user can define a default color for the indicator as well as upper and lower limit values and colors
- Display Value: Assigns the Indicators' color to the actual channel value or to the Average, RMS, ACRMS, Min, Max, Peak2Peak channel value at a user defined rate in seconds
- Style: The user can specify the number of columns for an Indicator cluster if several channels are selected
- Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*)

Remark: Up to 96 channels can be assigned to one single Indicator.

6.8 TABLE INSTRUMENT

	1	S. Harristan					4 <u>0</u> 2	Malastramontastast
	4.05						:=	No instrument selected
	-1.85	Time	411/1 Sim M	ALL /2 Sim (V)	AL 1/3 Sim IV	ALL/4 Sim IVI		
Analog meter	Digital meter	00:31:54.5691000	64.0819072872591	-353 3561230528532	-112,480044391118	-652,4959708802626		
		00:31:54,5690000	42,80531407399227	-240,47350889082847	-112.3200655245036	-662,4640227906555	412 10+	
		00:31:54,5689000	21,416425709942455	-121.7126846596861	-112,16008665788921	-662,4319554917589	4	
Loone .	tenner	00:31:54.5688000	0	0	-111.99998858198524	-662.4000074021518		
and the second s	20000	00:31:54.5687000	-21.359443669523912	121.66666987390879	-111.84000971537084	-662.3679401032553		
Recorder	Chart recorder	00:31:54.5686000	-42.577505121607686	240.29207235208995	-111.68003084875645	-662.3359920136481		
		00:31:54.5685000	-63.57073785354633	352.95653351418594	-111.52005198214205	-662.3039247147515	1.000	
		00:31:54.5684000	-84.25700666482025	456.8885565867854	-111.36007311552764	-662.2719766251445	100	
		00:31:54.5683000	-104.55524923851603	549.5325328199036	-111.20009424891325	-662.2400285355375		
-		00:31:54.5682000	-124.3864298156431	628.6119224104592	-111.03999617300927	-662.2079612366408	0	
Bar meter	Indicator	00:31:54.5681000	-143.67353919513374	692.1849252405076	-110.88001730639488	-662.1760131470337		
		00:31:54.5680000	-162.3417139431326	738.6922838023613	-110.72003843978048	-662.1439458481372		
		00:31:54.5679000	-180.31895164873427	766.9955493805454	-110.56005957316609	-662.11199775853		
1000		00:31:54.5678000	-197.53623013327277	776.4049770255584	-110,40008070655169	-662.0799304596335		
III .		00:31:54.5677000	-213.927388241032	766.6963340637033	-110.2401018399373	-662.0479823700264		
Table	Intere	00:31:54.5676000	-229.4300795135624	738.1160260965387	-110.08000376403332	-662.0160342804194		
		00:31:54.5675000	-243.98553377110173	691.3751365364005	-109.92002489741893	-661.9839669815227		
		00:31:54.5674000	-257.5386763218647	627.6315452129653	-109.76004603080453	-661.9520188919157		
	Ť 44	00:31:54.5673000	-270.038724008491	548.4614373530404	-109.60006716419014	-661.919951593019		
AI	MM+	00:31:54.5672000	-281.4393044173343	455.82008372429294	-109.44008829757573	-661.888003503412		
		00:31:54.5671000	-291.69821745988406	351.9937992915497	-109.27999022167175	·661.8559362045154		
Tert	scope	00:31:54.5670000	-300.77826983779164	239.543080385668	-109.12001135505736	-661.8239881149084		
		00:31:54.5669000	-308.64667899642296	121.24013903579677	-108.96003248844296	-661.7920400253013		
		00:31:54.5668000	-315.2756691713062	0	-108,80005362182857	-661.7599727264046		
and a		00:31:54.5667000	-320.64259059742153	-121.19138243635916	-108.64007475521417	-661.7280246367976		
		00:31:54.5666000	-324.7296810906217	-239.35008054584034	-108.48009588859978	-661.695957337901		
PP1	Video	00:31:54.5665000	-327.52430446621133	-351.56822212775427	-108.3199978126958	-661.664009248294		
		00:31:54.5664000	-329.0190697482366	-455.08551608191	-108.16001894608141	-661.6319419493973		
	-	00:31:54.5663000	-329.2114/354161633	-547.3567248665162	-108.00004007946701	-661.5999938597903		
h.	金陵	00:31:54.5662000	-328.10461525787965	-626.114726212368	-107.84006121285262	-661.5679265608936		
	1007 1	00:31:54.5651000	-325.70524359084905	-669.4260646517915	-107.66008234623821	-661.5359784712866		
XYPlet	Power	00.31.54.5650000	-322.0237030303514	-735,7363906136947	-101.52010547902561	-001.3040303010/35		
		00.31.54.5659000	-317.09277037233100	772 2000247095400	107.300003403/1304	-001.471303062763		
		00:31:54:5657000	-310.3100000403003	-113.2000247065406	-107.20002055110544	-001.4400149931739		
		00-31-54 \$656000	764 974973202507	735 1357802767507	106 99006990397665	661 3750006046773		
		00-31-54 5655000	.285 2749825188133	.688 5652543717449	+106.72008993726226	-661 3439323057755		
		00:31:54.5654000	-274.4767666502103	-625.0724793935829	-106.55999186135828	-661.3119842161685		
		00:31:54.5653000	-262.626171173208	-546.218037732462	-106.40001299474389	-661,2800361265615		
		00:31:54.5652000	-249.77290636156056	-453,9496899708057	-106.2400341281295	-661,2479588276649	1	
		00:31:54.5651000	-235.9706163955784	-350.5448103767226	-106.0800552615151	-661.2160207380578		
		00:31:54,5650000	-221.27640252496963	-238,55388170074528	-105.9200763949007	-661.1839534391612		
		00:31:54,5649000	-205.75106148741932	-120,7379102988024	-105,7600975282863	-661.1520053495541		
		00:31:54.5648000	-189.4580126249832	0	-105.59999945238232	-661.1199380506575		
		00:31:54.5647000	-172.46389393053573	120.68593504854616	-105,44002058576793	-661.0879899610504		
		00:31:54.5646000	-154.83796600132203	238.34884172267022	-105.28004171915353	-661.0559226621539		
		00:31:54.5645000	-136.65151599251	350.0930071692199	-105.12006285253914	-661.0239745725468		
		00:31:54.5644000	-117.9780960357697	453.1699420076725	-104.96008398592474	-660.9920264829398		
		00:31:54.5643000	-98.89268877424595	545.045614369457	-104.80010511931035	-660.9599591840431		
EN		00:31:54.5642000	-79.47206499042736	623.4627963564039	-104.64000704340637	-660.9280110944361	1	
Clear	Clear All							
	TC+1)	6 L 1	*	🔴) = 1 M (M (/~		(8 & B)		

The Table provides the user the measurement data in table form with an individual column for each signal and a column for the Time Axis. There are no Instrument Properties that can be manipulated by the user.

Remark: Up to 8 channels can be assigned to one single Table Instrument.

9 -1.85 0 * 1000-İ...., 1 • jum. AI -Îm. DEWETRON tr. 金寮

6.9 IMAGE INSTRUMENT

Figure 6-23: The Image Instrument – Overview

This feature allows the user to add an image to the measurement screen, i.e. a picture of the device under test or the company logo. The data path can be selected via the Instrument Properties:

- Source: Browse for the desired image file
- Fill Mode: Select different modes to adjust the image file to the Instrument size
- Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*)

6.10 TEXT INSTRUMENT

Figure 6-24: The Text Instrument – Overview

This feature allows the user to create customized text items on the measurement screen. Header Data can be displayed as well in the Text Box. For a detailed description of this feature please refer to section 4.2. The following Instrument Properties are available:

- Text: the desired text must be entered there. The entered text is automatically resized to fit within the boundaries of the text box. To change the color of the text, left click onto or touch the *Color* square to bring up the color selection palette. The style can be adjusted to **Bold** and *Italic*. Furthermore, the horizontal and vertical alignment can be changed.
- Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*)
6.11 SCOPE

This instrument affords the user the analysis options of a scope.

Remark: Up to 8 channels can be assigned to one single Scope.

6.11.1 INSTRUMENT PROPERTIES

- Trigger Settings:
 - In the *Channel* selection, the user can select the trigger channel. Any channel that is displayed on the scope can be selected.
 - In the *Edge* selection, the user can select if the selected signal shall be triggered on a *Rising* or on a *Falling* edge. The difference between the two modes is shown in Figure 6-26 for a 1 Hz sine wave that has an amplitude of 1.

Figure 6-26: Trigger on a *Rising* (left) and on a *Falling* (right) edge

- In the *Level* selection, the user can define the level of the trigger. The level can also be set with the *Level* cursor (see Figure 6-25) and must be within the signal range. Figure 6-27 shows a 1 Hz sine wave with an amplitude of ±1 which is triggered with a rising edge on level 0 and level +0.5.

Figure 6-27: Rising trigger edge with level 0 (left) and level +0.5 (right)

- In the Δ Hysteresis selection, the user can define a level the signal must pass before a new trigger event occurs. Setting a hysteresis level avoids unwanted trigger events that may occur caused by noise around the trigger level. The Δ Hysteresis level can also be set with the Hysteresis cursor (see Figure 6-25).

If the signal is triggered on a *Rising* edge, the range of the Δ *Hysteresis* level can be set from [0 ... (max_A + TL)].

If the signal is triggered on a *Falling* edge, the range of the Δ *Hysteresis* level can be set from [0 ... (max_A - TL]].

max_A: maximum signal Amplitude TL: selected Trigger Level

- Cursors: Select the desired values that shall show up when the cursors are activated. For a detailed description of the cursors please refer to section 6.4.2.3.
- Time Axis Division: Change the scaling of the X-Axis per division
- Value Axis Division: Change the scaling of the displayed signals individually per division
- Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*)
- The Offset Cursors (see Figure 6-25) can be used to displace the displayed signals vertically. Using this function will not affect the phase accuracy.

6.12 SPECTRUM ANALYZER

The FFT-Instrument provides the user with the ability to analyze data in real time within the frequency domain.

6.12.1 ASSIGNMENT OF TIME DOMAIN CHANNELS

If analog channels that represent a time domain signal are assigned to the Instrument, the FFT is calculated according to the following formula:

$$Y_k = \sum_{n=0}^{N-1} X_n e^{\frac{-i2\pi kn}{N}}; \quad k = 0 \dots N - 1$$

X_k... (complex) input signal Y_k... complex Fourier Transform of X_k N... number of samples

Depending on the spectrum to be plotted, the complex Fourier Transform Y_k is used for further calculations. For continuative information, please refer to section 6.12.3.2.

Remarks:

- Up to 8 channels can be assigned to one single Spectrum analyzer.
- The Spectrum analyzer provides the zooming option as well. For the detailed description of the zooming function, please refer to section 6.4.2.5.
- The user can easily export the currently displayed FFT-spectrum via pressing CTRL+C and paste it into an Excel file or Notepad window
- Peak Hold function: To facilitate the read off from local maxima, the user can press the SHIFT key. This makes the cursor remain at local maxima.

6.12.2 Assignment of Frequency Domain Channels

Mathematical frequency channels that are calculated using the FFT math (see section 5.3.6) can be assigned and displayed to the Spectrum Analyzer as well. The Amplitude channel (called *Channel_Name_Amp* per default) and the Phase channel (called *Channel_Name_Phi* per default) can be assigned to the Spectrum Analyzer but no complex FFT channels (called *Channel_Name_Cpx* per default).

Remarks:

- Time domain channels and frequency domain channels cannot be assigned to the same Spectrum Analyzer but only to separate ones!
- If frequency domain channels are assigned to the Spectrum Analyzer, the Instrument Properties are reduced to the Frequency axis and Value Axis settings (see Figure 6-29). For details, please refer to section 6.12.3.4.

Figure 6-29: Instrument Properties of the Spectrum Analyzer if Frequency Domain channels are assigned

6.12.3 INSTRUMENT PROPERTIES FOR TIME DOMAIN CHANNELS

The desired *Data size* (i.e. the number of samples in time domain used for the calculation of one spectrum which is denoted with N in the upper formula) can be edited here. The data size is freely definable within a range from 42 to 1048576 (2²⁰) samples. The default settings are

The Line resolution relates to the sample rate and the Data size:

$$Line \ resolution = \frac{Sample \ Rate}{Data \ size} \ [Hz]$$

The radio button *Improve line resolution* will enable zero-padding. For detailed information, please refer to section 6.12.5.

Remarks:

• If channels with different sample rates are displayed in one Spectrum analyzer:

- The *Line resolution* is calculated for each sample rate individually and cannot be edited in the Instrument Properties. Thereby, the number of plotted FFT bins is the same for each signal but the FFT resolution is different.
- Zero-padding (*Improve line resolution*) cannot be activated.
- Please note that changing the *Data size* will affect the *Line resolution*. Therefore, the line resolution is within a range from $\frac{Sample Rate}{2^{20}}$ to $\frac{Sample Rate}{42}$ samples.
- If Improve line resolution is de-selected, the number of calculated FFT bins is equal to the Data size. If Improve line resolution is selected, the number of calculated FFT bins is always higher than the number of data samples.
- The number of plotted FFT bins is always $trunc(\frac{number of calculated FFT bins}{2}) + 1$. The first line is plotted @ 0 Hz and the last line is plotted @ $\frac{Sample Rate}{2}$ Hz. If logarithmic frequency axis scaling is selected, the 0 Hz line will not be plotted, because the common logarithm is not defined for 0.

6.12.3.1 Section Window

The *Type* and *Normalization* of the window function can be edited here.

6.12.3.1.1 Window Type

The Spectrum analyzer offers the usage of 7 different window functions (N denotes the Window size in samples and corresponds to the *Data size*):

Hanning window:

$$w(n) = \frac{1}{2} \left[1 - \cos\left(\frac{2\pi n}{N-1}\right) \right]; \quad n = 0 \dots N - 1$$

Hamming window:

Figure 6-31: Hamming window in time and frequency domain (N = 128)

$$w(n) = \alpha - \beta \cos\left(\frac{2\pi n}{N-1}\right); \quad n = 0 \dots N - 1$$

$$\alpha = 0.54$$

$$\beta \dots 1 - \alpha$$

Rectangular window:

$$w(n) = 1; n = 0 \dots N-1$$

Blackman window:

Figure 6-33: Blackman window in time and frequency domain (N = 128)

$$w(n) = a_0 - a_1 \cos\left(\frac{2\pi n}{N-1}\right) + a_2 \cos\left(\frac{4\pi n}{N-1}\right); \quad n = 0 \dots N - 1$$
$$a_0 = 0.42$$
$$a_1 = 0.5$$
$$a_3 = 0.08$$

Tree decide Tree

Blackman-Harris window:

$$w(n) = a_0 - a_1 \cos\left(\frac{2\pi n}{N-1}\right) + a_2 \cos\left(\frac{4\pi n}{N-1}\right) - a_3 \cos\left(\frac{6\pi n}{N-1}\right); \quad n = 0 \dots N - 1$$

$$a_0 = 0.35875$$

$$a_1 = 0.48829$$

$$a_2 = 0.14128$$

$$a_3 = 0.01168$$

■ Flat-Top window:

Figure 6-35: Flat-Top window in time and frequency domain (N = 128)

$$w(n) = a_0 - a_1 \cos\left(\frac{2\pi n}{N-1}\right) + a_2 \cos\left(\frac{4\pi n}{N-1}\right) - a_3 \cos\left(\frac{6\pi n}{N-1}\right) + a_4 \cos\left(\frac{8\pi n}{N-1}\right); n = 0 \dots N - 1$$
$$a_0 = 0.21557895$$
$$a_1 = 0.41663158$$
$$a_2 = 0.277263158$$
$$a_3 = 0.083578947$$
$$a_4 = 0.006947368$$

Bartlett window:

Figure 6-36: Bartlett window in time and frequency domain (N = 128)

$$w(n) = 1 - \left| \frac{n - \frac{N-1}{2}}{\frac{N-1}{2}} \right|$$

The following table will give an overview and recommendations about the usage of the different window functions. Please note that this table is only a matter of recommendation and makes no claim to be complete or correct.

Signal Content	Window
Sine wave or combination of sine waves	Hanning
Sine wave (amplitude accuracy is important)	Flat Top
Narrow-band random signal (vibration data)	Hanning
Broadband random (white noise)	Rectangular
Closely spaced sine waves	Rectangular,
	Hamming
Unknown Content	Hanning
Accurate single tone amplitude measurements	Flat Top

Figure 6-37: Recommendation about the usage of different window funtions²

The following figure compares the different window functions in time domain:

Figure 6-38: Comparison of the window functions in time domain (N=128)

The following table summarizes the two most important characteristics of the different window functions. The *Main Maximum Width* describes the single-sided width of the main maximum as number of FFT bins. The *Main Maximum Width* in Hz is the product of *Main Maximum Width* and *Line resolution*. The *Max. Side Lobe Level* denotes the damping of the first side lobe compared to the main maximum in decibel.

Window function	Main Maximum Width	Max. Side Lobe Level [dB]
Hanning	2	-31
Hamming	2	-43
Rectangular	1	-13
Blackman	3	-58
Blackman-Harris	4	-92
Flat-Top	5	-68
Bartlett	2	-27

Table 6-2: Properties of the window functions

² Source: http://www.ni.com/white-paper/4844/de/#toc3

6.12.3.1.2 Normalization

As the usage of a window function causes a decrement of the signals' amplitude and power, the user can select between *None, Amplitude True* and *Power True* Normalization.

- *None:* The spectrum will not be normalized, and the amplitude and the power error will remain
- *Amplitude True:* The damping of the signal amplitude caused by the window function will be compensated. The power loss will remain. The correction happens according to the following formula:

$$S_{AmpCorr \ k} = S_k * \left[\frac{N}{\sum_{k=1}^{N} W_k} \right]$$

Power True: The Power loss caused by the multiplication with the window function will be compensated and the amplitude error will remain. The correction happens according to the following formula:

$$S_{PowCorr\,k} = S_k * \sqrt{\frac{N}{\sum_{k=1}^{N} W_k^2}}$$

S_k... Un-normalized signal at position k N... Length of the Window function W_k...Value of the window function at position k

A detailed example for the necessity to normalize FFT spectra can be found in section 6.12.6.

Remark: The normalization is applied to the signal in time domain.

6.12.3.2 Section Spectrum

In the *Spectrum* section, the user can select the type of the spectrum plotted in the Spectrum analyzer. In the following section, the available spectra and their formula are listed.

• Amplitude: Plots the default amplitude spectrum normalized to the number of FFT lines according to the following formula:

$$A_{k} = \frac{1}{N} \sqrt{Re\{Y_{k}\}^{2} + Im\{Y_{k}\}^{2}}; \quad k = 0 \quad [Signal \ Unit]$$
$$A_{k} = \frac{2}{N} \sqrt{Re\{Y_{k}\}^{2} + Im\{Y_{k}\}^{2}}; \quad k = 1 \dots N \quad [Signal \ Unit]$$

• Amplitude RMS: Plots the RMS amplitude spectrum by dividing the Amplitude spectrum by $\sqrt{2}$.

$$A_{RMS\,k} = \frac{A_k}{\sqrt{2}}; \quad k = 1 \dots N \quad [Signal Unit]$$

Amplitude²: Plots the squared amplitude spectrum by squaring the Amplitude spectrum

$$A_{sq k} = A_k^2;$$
 $k = 1 \dots N$ [(Signal Unit)²]

Decibel: Plots the logarithmic Amplitude spectrum referred to a freely definable reference level A_{Ref}.
 The reference value A_{ref} can be edited in the Value section and its corresponding level can be defined in the Level section.

$$L_{A\,k} = 20 * \log_{10}\left(\frac{A_k}{A_{Ref}}\right); \qquad k = 1 \dots N \quad [dB]$$

Decibel RMS: Plots the logarithmic Amplitude RMS spectrum referred to a freely definable reference level A_{Ref}. The reference value A_{ref} can be edited in the Value section and its corresponding level can be defined in the Level section.

$$L_{ARMSk} = 20 * \log_{10}\left(\frac{A_{RMSk}}{A_{Ref}}\right); \quad k = 1 \dots N \quad [dB]$$

• Decibel Max Peak: Plots the logarithmic Amplitude spectrum referred to the highest occurring value in the Amplitude spectrum. Thus, the highest occurring value corresponds to 0 dB.

$$L_{A \max k} = 20 * \log_{10} \left(\frac{A_k}{\max \{A_k\}} \right); \quad k = 1 \dots N \quad [dB]$$

 Decibel V-RMS: Plots the logarithmic Amplitude spectrum referred to 1 [Signal Unit] (1 V (RMS) is a common reference level for voltage and corresponds to 0 dBV)

$$L_{A Max k} = 20 * log_{10} \left(\frac{A_{RMS}}{1} \right); \quad k = 1 ... N \quad [dB]$$

Decibel u-RMS: Plots the logarithmic Amplitude spectrum referred to $\sqrt{0.6}$ [Signal Unit] ($\sqrt{0.6} = 0.775 \text{ V}$ (RMS) is a common reference level for voltage and corresponds to 0 dBu. 0.775V is the voltage that converts 1 mW electrical power on a 600 Ω resistance)

$$L_{AMax k} = 20 * log_{10} \left(\frac{A_{RMS}}{\sqrt{0.6}} \right); \quad k = 1 \dots N \quad [dB]$$

Sound Pressure Level: Plots the logarithmic Amplitude spectrum referred to 20μ [Signal Unit] (20 μPa is the common reference level for sound pressure in air and corresponds to 0 dB)

$$L_{A Max k} = 20 * log_{10} \left(\frac{A_{RMS}}{20 \mu} \right); \quad k = 1 \dots N \quad [dB]$$

 Sound Pressure Level (Water): Plots the logarithmic Amplitude spectrum referred to 1μ [Signal Unit] (1 μPa is the common reference level for sound pressure in water and corresponds to 0 dB)

$$L_{A Max k} = 20 * log_{10} \left(\frac{A_{RMS}}{1 \mu} \right); \quad k = 1 \dots N \quad [dB]$$

PSD: The Power Spectral Density (PSD) is based on the magnitude squared spectrum (M_{sq}) which differs from the amplitude squared spectrum (A_{sq}) insofar that the magnitude squared spectrum is only a one-sided spectrum.

$$M_{sq\ k} = Re\{Y_k\}^2 + Im\{Y_k\}^2; \quad k = 1 \dots N \quad [(Signal\ Unit)^2]$$

$$PSD_{k} = \frac{1}{N^{2}} * \frac{1}{df} * M_{sq\ k}; \quad \text{with } df = \frac{SampleRate}{N} \quad [(Signal\ Unit)^{2}/Hz]$$

PSD-TISA: plots the Time Integrated Squared Amplitude (TISA) PSD

$$PSD_{TISA_{k}} = \frac{1}{N} * dt * M_{sq\,k}; \qquad k = 1 \dots N, \quad dt = \frac{1}{SampleRate} \qquad [(Signal \, Unit)^{2}s]$$

PSD-MSA: plots the Mean Squared Amplitude (MSA) PSD

$$PSD_{MSA_k} = \frac{1}{N^2} * M_{sq\,k}; \qquad k = 1 \dots N \quad [(Signal \ Unit)^2]$$

PSD-SSA: plots the Sum Squared Amplitude (SSA) PSD

$$PSD_{SSA_k} = \frac{1}{N} * M_{sq\,k}; \qquad k = 1 \dots N \quad [(Signal \ Unit)^2]$$

Remarks PSD, PSD-TISA, PSD-MSA and PSD-SSA are different scalings of the same spectral content and differ in the physical unit.

■ Phase: Plots the phase spectrum from -180° ... +180°.

$$\varphi_k = \tan^{-1} \frac{Im\{Y_k\}}{Re\{Y_k\}}; \quad k = 1 \dots N \quad [^\circ]$$

Phase unwrapped: Plots the unwrapped phase spectrum to avoid discontinuities from -900° ... +900°.

$$\varphi_{k,unwrapped} = \tan^{-1} \frac{Im\{Y_k\}}{Re\{Y_k\}}; \qquad k = 1 \dots N \quad [^\circ]$$

Phase radiant: Plots the phase spectrum from - π ... + π .

$$\Phi_k = \frac{\varphi_k}{360^\circ} 2\pi; \quad k = 1 \dots N \quad \text{[rad]}$$

Phase unwrapped (radiant): Plots the unwrapped phase spectrum to avoid discontinuities from -- $5\pi \dots + 5\pi$.°.

$$\Phi_{k,unwrapped} = \frac{\varphi_{k,unwrapped}}{360^{\circ}} 2\pi; \quad k = 1 \dots N \quad [rad]$$

6.12.3.3 Section *Periodogram*

The usage of a window function damps the signal information at the window edges and emphasizes the signal information in the middle of the window function. If the signal is stationary, the variance of its spectrum rises. This problem can be avoided with a periodogram. If the option *Periodogram* is selected, the spectrum is calculated for overlapping signal parts and averaged afterwards. This procedure reduces the variance, but the spectral resolution is degraded as well.

In the Average selection, the user can select the number of spectra that shall be used for the mean value calculation. 2, 3, 4, 5, 8 or 10 spectra can be used for the mean value calculation.

In the Overlap selection, the user can select how much the single spectra used for the mean value calculation shall overlap in the time domain. The user can select an overlapping factor of 0%, 50%, 75% 80% or 90%.

The Periodogram calculation is exemplified in section 6.12.7.

6.12.3.4 Additional Instrument Properties

- Frequency Axis: Change the scaling of the X-Axis
- Value Axis: Change the scaling of the Y-Axis. For quick Y-Axis scaling features, please refer to section 6.4.2.2.
- Layer: Moves the Instrument in front of or behind another object

Remark: The properties of the FFT can be changed and updated in the *PLAY* mode as well as in the *LIVE* and *REC* mode.

6.12.4 MARKERS

Figure 6-39: FFT Marker - Overview

To analyze the behavior of a certain frequency line, the user can display the actual value in a table below the FFT plot. Therefore, the user must select the desired frequency line with a mouse click. Then, the selected point will show up in the table. The user can change the frequency position by moving the respective cursor across the frequency axis or with a double click on the frequency in the table. Up to five frequency lines can be displayed in the table simultaneously. While moving the mouse in the frequency plot, the actual frequency and the actual signal value of the signal next to the cursor are displayed in the upper left corner.

6.12.5 IMPROVE LINE RESOLUTION (ENABLE ZERO-PADDING)

If *Improve Line Resolution* is selected, zero-padding is enabled. The following paragraph explains the idea of zero-padding and its properties.

6.12.5.1 Theory of zero-padding

If zero-padding is not applied, the line resolution and thus the accuracy of a FFT depends on the length of the transformed signal and on the sample rate:

$$Line \ resolution = \frac{Sample \ Rate}{Data \ size} \ [Hz]$$

The data size is equal to the number of FFT bins here. Thus, a higher line resolution can be achieved by reducing the sample rate or increasing the data size. Normally, a sample rate reduction cannot be accepted due to bandwidth reasons. Increasing the data size may cause problems in Realtime applications, because the delay until an FFT is displayed increases with increasing data size. Moreover, if short signals are transformed, a data size increment is simply not possible.

Zero-padding adds zeros at the end of the signal part to be transformed and thus increases the data size artificially. Please note that the *Data size* is not any more equal to the number of FFT bins. The following example will clarify that: A 64-sample signal in time domain shall be matched to an FFT with 256 FFT bins. Therefore, 192 zeros must be added at the end of the 64-sample signal in time domain. Thus, the Line resolution can be determined according to the following formula:

$$Line \ resolution = \frac{Sample \ Rate}{Data \ size + Number \ of \ zeros} = \frac{Sample \ Rate}{Number \ of \ FFT \ bins} \ [Hz]$$

In OXYGEN, the number of attached zeros can be manipulated indirectly by varying the *Data size* or the *Line resolution* in the Instrument Properties of the Spectrum analyzer (see section 6.12.3).

In OXYGEN, the Line resolution can be selected from $\frac{Sample Rate}{2^{20}}$ to $\frac{Sample Rate}{Data size}$ if zero-padding is selected. If a lower line density is desired, zero-padding is not required and can be de-selected. In the signal theory, the two most common application areas of zero-padding are the already explained

increased sample density in the frequency domain and the signal enlargement to a length of 2ⁿ samples, because time signals with a length of 2ⁿ samples permit a faster FFT-computation.

Even though zero-padding increases the sample density in the frequency domain, the FFT is not more accurate if zero-padding is used. Zero-padding is only a kind of an interpolation and does not increase the resolution. This characteristic is shown in section 6.12.5.2. To increase the resolution, a longer signal in time domain is required.

Remark: Zero-padding is applied after multiplying the signal with the window function.

6.12.5.2 Zero-padding – A practical example

In this section, zero-padding is explained with an easy practical example. For this purpose, the following signal is used:

$$x(t) = 2.5 * sin(2 * \pi * 1 * t)$$

The signal has a length of 2 seconds and is sampled with 20 Hz. Thus, the signal consists of 41 samples. Transforming the signal into the frequency domain leads to the following spectrum:

The spectrum consists of 41 bins and the peaks @1 Hz and 19 Hz are clearly visible. Now, the signal length is enhanced from 41 samples to 64 samples by adding 23 samples at the end of the signal:

Transforming the signal to the frequency domain leads to the following spectrum:

Figure 6-43: Signal 1 in frequency domain, zero-padding to 64 samples

Now the spectrum consists of 64 samples and not 41 samples and the additional frequency bins are kind of an interpolation but do not lead to a sharper spectrum.

The same trend is visible if the original signal is enhanced from 41 samples to 128 samples by adding 87 zeros at the end of the signal:

Figure 6-44: Signal 1 in time domain, zero-padding to 128 samples

This signal leads to the following spectrum with 128 frequency bins:

Figure 6-45: Signal 1 in frequency domain, zero-padding to 128 samples

Again, the additional bins are only kind of an interpolation, but do not lead to a sharper spectrum. To enlarge the accuracy of the FFT, a longer signal in time domain is required. Therefore, the original sine signal is enlarged to 6.4 seconds (128 samples):

The resulting spectrum consists also of 128 bins but now, the additional bins really lead to a sharper spectrum and are no longer only an interpolation of the original 41 frequency bins:

6.12.6 NORMALIZATION OF FFT SPECTRA

In this section, the necessity of the normalization during the FFT calculations is explained. Therefore a 50 Hz sine wave with 2.5 amplitude shall be transformed to the frequency domain. The sample rate is 1000 Hz and the signal length 10s. The signal looks as follows in time domain:

 $x(t) = 2.5 * sin(2 * \pi * 50 * t)$

After transforming the signal into the frequency domain according to the formula

$$Y_k = \sum_{n=0}^{N-1} X_k e^{\frac{-i2\pi kn}{N}}; \quad k = 0 \dots N - 1 \qquad (N = 10001)$$

and determining the absolute value, the spectrum is the following:

Two things are peculiar:

- As the FFT produces a two-sided spectrum, there is a bin @ 50 Hz and @ 950 Hz.
- As the signal level of the two peaks is ~12500, the unit seems to be arbitrary.

To create a comprehensible signal unit, the Fourier Transform of the signal must be divided by the length of the FFT which is 10001 in this example.

Now, the amplitude of both peaks is ~1.25. As we still have two peaks whose sum is ~2.5, the signal unit issue is solved by dividing the spectrum by the length of the FFT.

In a next step, we truncate the spectrum at the Nyquist frequency $(\frac{f_s}{2})$ which is 500 Hz in our case and multiply the remaining spectrum from 0 to 500 Hz with the factor 2 to ensure that the power of the signal in the frequency domain is still the same as in the time domain. After that, the following spectrum results:

Figure 6-51: One-sided spectrum X(f) multiplied by factor 2

In this first example, there is no normalization needed, because we didn't use a window function. In this case, there was no window function needed, because we transformed a finite and periodical signal. In practice, this is normally not the case and a continuing signal is transformed block by block. As these block lengths are finite, the Leakage effect occurs if the block length does not coincidentally match with an integer multiple of the signal period. In this case, the frequency spectrum becomes too wide. This is a natural effect resulting from the Fourier Transform property which says that a multiplication in time domain leads to a convolution in the frequency domain. The fact that the frequency spectrum becomes too wide can be optimized but not completely rejected by the usage of a window function. This leads to the fact that the signal is faded in at the beginning of the window and faded out at the end of the window. Thus, an artificial periodical signal results and an error in the signal amplitude results. This amplitude error is corrected by the normalization of the signal.

Let's assume again the 50 Hz sine wave with 2.5 amplitude shown in Figure 6-48 and multiply it with a Hanning window. The formula for the creation of a Hanning window can be found in section 6.12.3.1.1. After the multiplication, the signal looks as follows:

Figure 6-52: x(t)win in time domain; multiplied with a Hanning window

$$\mathbf{x}(\mathbf{t})_{\text{win}} = [2.5 * \sin(2 * \pi * 50 * \mathbf{t})] * \left[0.5 * \left(1 - \cos\left(\frac{2 * \pi * n}{N - 1}\right) \right) \right]; \quad n = 0 \dots N - 1$$

The spectrum of the signal looks as follows:

Again, the signal unit looks arbitrary. Thus, we divide the spectrum by the length of the FFT (N=10001) again.

Figure 6-54: x(t)_{win} in frequency domain divided by the FFT-length

After that we truncate the signal again at the Nyquist frequency and multiply the remaining spectrum with the factor 2 to secure that the signal power in time and frequency domain is equal.

Figure 6-55: One-sided spectrum $X(f)_{win}$ multiplied by factor 2

Now we clearly see that the peak @50 Hz is not 2.5 as before but only ~1.25. This is because of the windowing. This can be corrected with the normalization. There are two possibilities: We can either normalize the spectrum to the original signal amplitude or to the original signal power.

To refit the spectrum according to the original signal amplitude, we must select the Amplitude True normalization:

$$X(f)_{win_{AmpCorr}} = X(f)_{win} * \left[\frac{N}{\sum_{k=1}^{N} W_k}\right]$$

where N denotes again the window (and signal) length and W_k the value of the window function at position k.

Figure 6-56: Amplitude-True-normalized spectrum X(f)

There we can see that the peak @50 Hz is again 2.5. But in this case, the signal power in frequency domain is not the same as in time domain. If this is required, we must select the Power True normalization:

$$X(f)_{win_{PowCorr}} = X(f)_{win} * \sqrt{\frac{N}{\sum_{k=1}^{N} W_k^2}}$$

where N denotes again the window (and signal) length and Wk the value of the window function at position k.

Now, the power in frequency domain is the same as in time domain, but the amplitude does not match correctly anymore.

6.12.7 CALCULATION OF A PERIODOGRAM

This section will demonstrate the calculation of a periodogram on a practical example. The exemplary window size is 1000 samples. The following figures illustrate the decomposition of a time signal for the calculation of a periodogram:

- Figure 6-58: periodogram with an average of 4 spectra and 0% overlapping
- Figure 6-59: periodogram with an average of 4 spectra and 75% overlapping (750 Samples)
- Figure 6-60: periodogram with an average of 2 spectra and 50% overlapping (50 Samples)

Figure 6-58: Decomposition of the time signal for a Periodogram with an average of 4 spectra and 0% overlapping

Figure 6-60: Decomposition of the time signal for a Periodogram with an average of 2 spectra and 50% overlapping

6.13 VIDEO INSTRUMENT

Figure 6-61: Video Instrument – Overview

OXYGEN provides the possibility to record a video during the measurement with a webcam or with a **DEWE-CAM-GIGE-120**. For example, this is a very useful tool for automotive applications when a test run is performed, and the test track shall be recorded. Please note that the camera channels are not activated by default in a new setup. This can be changed in the *Data Channels* menu in the *Video Channels* section by clicking on the *Activate* switch. This will activate your plugged camera. For enabling the record mode as well, make sure that the *Stored* button has the red colored background (see Figure 6-62).

r j	All		Searc	140 C	Yx I	CAN				«					
-	~	8×	Active	Stored	il i	Channel	Color	Setup	Scaled Value	Mode	Sample Rate	Range		Scaling	
					AL 2/2 SIM	TRON-1020-ACC-0-BNC		ø	-0.16/759 AVG	Voltage	10000 Hz	-100 V _ 100 V	Offset: 0	On	EV-
0					Al 2/3 Sim	TROUGHERSTON		۰	59.999987 AVG	Voltage	10000 Hz	-100 V _ 100 V	Scale: 1 Offset: 0	Uni	itV
					Al 2/4 Sim			۲	19.999992 AVG	Voltage	10000 Hz	-100 V _ 100 V	Scale: 1 Offset: 0	Uni	itV
					Al 2/5 Sim			0	59.999987 AVG	Voltage	10000 Hz	-100 V _ 100 V	Scale: 1	Uni	itV
					Al 2/6 Sim	Tech-Ind-+cc-bac		*	-10.000005 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1	Uni	ieν
				D	CNT 2/1 Sim	TRON-IND-ACC-0-BVC		-	3.958300e+4 AVG	Events	10000 Hz	-2.14748365e748365e+009	Scale: 1	U	nit
	V	ā	-	TRION-	2402-MULTI-8	-LOB	-		(-234) et al.				Onset 0		
		ň			Al 3/1 Sim			-65	0.038276 AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1	Un	iεV
	11		-	õ	Al 3/2 Sim	TRION-2402-MULTI-6-L08		65	0.004620 AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1	Uni	itV
			-	ŏ	AI 3/3 Sim	TRION-2402-MULTI-6-L08	-	-	6.019099 AVG	Vellage	10000 14-	101 101	Offset: 0 Scale: 1	Un	it V
				2	Alas Ala/4 Sim	TRION-2402-MULTI-8-L08			1.996159 AVG	voitage	10000 H2	V 01 = V 01-	Offset: 0 Scale: 1	Un	it: V
				-	A13/4	TRION-2402-MULTI-8-L08	-	101	6.003839 AVG	vonage	10000 Hz	-10 V = 10 V	Offset: 0 Scale: 1	lln	it V
				0	Al 1/5	TRON-2402-MULTI-6-L05		\$	0.000000 AVG	Voltage	10000 Hz	-10 V _ 10 V	Offset: 0	Un	ie V
				0	A13/6	TRION-2802-MULTI-6-L08		۲		Voltage	10000 Hz	-10 V _ 10 V	Offset: 0	U.	
					Al 3/7 Sim	TRION-2002-MULTI-6-L08		Ø		Voltage	10000 Hz	-10 V _ 10 V	Offset: 0	Uni	E.V.
				0	Al 3/8 Sim	TRON-282-MULTI-5-L08		Φ	0.000000 AVG	Voltage	10000 Hz	-10 V _ 10 V	Scale: 1 Offset: 0	Uni	εv
				0	CAN 3/1 Sim	TRIDIN-2802-MULTI-6-L08		\$	used as analog	HighSpeed					
	Y			TRION-	2402-dACC-8-	SMB									
					Al 4/1 Sim	TRON-2422-64CC-5-5HB		۲	0.421641 AVG	Voltage	10000 Hz	-100 V _ 100 V	Scale: 1 Offset: 0	Uni	itV
					Al 4/2 Sim	TRON (102-4400-5-048		帝	-0.013301 AVG	Voltage	10000 Hz	-100 V _ 100 V	Scale: 1 Offset: 0	Uni	it V
					Al 4/3 Sim				60.159283 AVG	Voltage	10000 Hz	-100 V _ 100 V	Scale: 1 Offset: 0	Uni	itV
					Al 4/4 Sim			۲	19.967992 AVG	Voltage	10000 Hz	-100 V _ 100 V	Scale: 1 Offset: 0	Uni	it:V
					Al 4/5 Sim			۵	60.031987 AVG	Voltage	10000 Hz	-100 V _ 100 V	Scale: 1	Uni	ie V
					Al 4/6 Sim				-9.920005 AVG	Voltage	10000 Hz	-100 V _ 100 V	Scale: 1	Uni	ieν
		n		0	Al 4/7 Sim	THION-JAD2-BACC-8-SIVE			0.000000 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1	Uni	iεV
	11			0	Al 4/8 Sim	TRON-2822-EACC-5-SHB		ø	0.000000 AVG	Voltage	10000 Hz	-100 V - 100 V	Scale: 1	Uni	ie V
		ň		0	CNT 4/1 Sim	TRION-2402-EACC-5-SMB		0	3.958300e+4 AVG	Events	10000 Hz	-2.147483/i5e748365e+009	Scale: 1	U	nit:
				ō	CNT 4/2 Sim	TRION-2402-BACC-6-SHIB		0	7.916633e+4 AVG	Events	10000 Hz	-2.14748365e748365e+009	Scale: 1	U	nit
	-	ä	-	Video C	CNT 4/2	TRION-2402-BACC-6-SMB			(2008)81 ×				Unset: 0		
		H			HP HD Web	am [Fixed]		65							
					CyberLink V	Vering Manager	-	and and a			0.for				
			1	3	CuberLink, y Man	ager USB Camera					wips				

Figure 6-62: Activate cameras and enable recording

After that the user can find the cameras in the *Data Channel* List of the Video Instrument and assign a video channel. Please note that the video recording with a webcam or a DEWE-CAM-GigE-120 in fixed frame rate mode are not synchronized to the other measurement channels. When synchronized recording is required, OXYGEN supports time synchronous recording with a DEWE-CAM-GigE-120. For the driver installation and the required software settings please refer to the Installation Guide of the DEWE-CAM-GigE-120 in OXYGEN.

Remark: If the camera channel does not appear in the Channel List although a camera is connected to the measurement system, make sure that *CAMERA Series* for webcams or the *GIGECAMERA Series* for GigE cameras are enabled in the *DAQ Hardware* setup (see Figure 6-63) in the *System Settings*.

Figure 6-63: Enabling the Camera Series and the GigE Camera series in the DAQ Hardware setup

The Video Instrument has the following Instrument Properties (see Figure 6-61):

- Style: The user can specify the number of columns if several channels are selected
- Video Display: If Show time is selected, the current measurement time is displayed in the Video Instrument
- Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*)

Remark: For each connected camera, there exists a counter channel that counts the number of received frames since acquisition start. The channel has the same name as the respective camera with RcvdCNT appended. To activate the counter, you need to activate the channel (The channel is not activated automatically). The channel can be found in the *Video Channels* section of the Channel List (see Figure 6-64).

Video Channels										
			Camera 50-0 50-0503331703	51703 RcvdCNT Received frames		\$	2.855000e+2	ACT 2147483647	Events	
			Camera 50-0 50-0503331703	503331703 Manta_G-031C (E0020015)		۰	and the second			100 fps

Figure 6-64: Frame Counter Channel

6.14 XY-PLOT

Figure 6-65: The XY-Plot – Overview

With the XY-Plot, it is possible to analyze the dependency of a measurement channel on the Y-Axis to another one on the X-Axis. A common application in the automotive sector is the analysis of the engine sound in the frequency domain (Y-Axis) in the dependency of the motor speed (X-Axis). The user can manipulate the following Instrument Properties:

- XYPLOT: The user can select the channel that shall be plotted on the X-Axis in the X Axis Channel dropdown menu. The other selected channels will be plotted on the Y-Axis. With the menus Draw points, Draw lines and their size selection the user can change the graphical characteristics of the plotted signal.
- Interval: The time interval of the plotted data is displayed here and in the upper left corner of the Instrument. To start the drawing of a new plot and delete the currently displayed time interval the user can press the *Clear* button. If the check box *Limit duration* is selected the user can define a time interval to limit the plotted information. I.e. when 1 second is selected, all information older than 1 second will be deleted automatically.

Y-Axis:

Individual scaling creates a separate Y-Axis for each signal *Automatic scaling* zooms the Y-axis to the actual displayed min and max value *Range:* Assign a user-defined min/max value to the Y-Axis scaling

X-Axis:

Automatic scaling zooms the X-axis to the actual displayed min and max value Range: Assign a user-defined min/max value to the X-Axis scaling

Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*)

Remarks:

 Additional features for Y-Axis scaling (see section 6.4.2.2) and zooming (see section 6.4.2.5) are also supported in the XY-Plot Instrument

- In the PLAY mode and LIVE mode (with frozen screen) the user can scroll through the measurement data by moving the orange time marker in the Overview bar (see Figure 6-66) or in a Recorder if one is displayed. The Interval settings in the Instrument Properties are respected during this operation.
- Up to 9 channels can be assigned to one single Table Instrument (1 channel to the X-Axis, 8 channels to the Y-Axis).

Figure 6-66: XY-Plot - Data scrolling

6.15 GPS PLOT

Figure 6-67: The GPS plot – Overview

With the *GPS plot*, the user can display the GPS-channels *Latitude*, *Longitude* and *Heading* which are acquired by a TRIONTM-TIMING or TRIONTM-VGPS-20/-100 module (see section 5.8). The individual channels *Latitude*, *Longitude* and *Heading* are matched automatically to the *LAT*, *LON* and *HEAD* input parameter of the Instrument according to the *Channel Mode*. Thus, the channels can be renamed arbitrarily.

Instead of the raw hardware channels *Latitude, Longitude* and *Heading,* mathematical channels can be assigned to the *GPS plot* as well (i.e. Statistics channels of *Longitude, Latitude* or *Heading*). If mathematical channels shall be assigned to the *GPS plot*, the corresponding *Latitude* channel must be assigned first, the *Longitude* channel second and the *Heading* channel third. In this case, an automatic channel match is not possible, because the *Channel Mode* information is missing.

The assignment of the individual channel to the *LAT*, *LON* and *HEAD* input parameter of the Instrument can be seen in the upper left corner of the Instrument.

The displayed map is an online map from OpenStreetMap[©]. If the PC has no internet connection, the map is displayed if it is stored in the cache. If the cache is empty, no map is displayed without internet connection.

The user can manipulate the following Instrument Properties:

- ZOOM MODE:
 - Manual: The user can zoom with the scroll wheel and move the map with the left mouse button.
 The actual position will not be centered when the position is updated.
 - *Fit*: The complete track of the object is visible in the Instrument. Zooming or moving is not applicable.
 - *Center*: The actual position of the tracked object is always displayed in the center of the Instrument. Zooming with the scroll wheel and moving with the left mouse button is possible but the actual position will be centered again when the position is updated.

- Rotate: The actual position of the tracked object is always displayed in the center of the Instrument and the heading shows always to the top. Zooming with the scroll wheel and moving with the left mouse button is possible but the actual position will be centered again when the position is updated.
- Show Map: The user can select if the map shall be displayed or not
- TRACK:
 - The elapsed track will be deleted by clicking on the *Clear* button
 - The drawing of the elapsed track can be limited by entering a time in seconds in at *Limit duration*
- Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*)
- BACKGROUND IMAGE:

For offline usage, an image can be loaded to replace the map. An image can be selected by clicking on the *Import Image* button and browsing for the desired file. After selecting the desired file, the *Positioning* dialog will open:

Figure 6-68: Image positioning dialog

Арргу

Two GPS coordinates within the loaded image must be known to position the image correctly. In Figure 6-68, the two points and their corresponding coordinates are marked with red and blue. The procedure to position the image is the following:

- Two red cursors are generated by the Positioning dialog. In Figure 6-68, they can be found at the top of the image. These cursors must be put on the known coordinates.
- The coordinates of both known points must be entered.
- Latitude and Longitude of MAP POINT 1 must be entered for the known coordinates the first red cursor is placed on. In Figure 6-68, this is the GPS coordinate marked with blue
- Latitude and Longitude of MAP POINT 2 must be entered for the known coordinates the second red cursor is placed on. In Figure 6-68, this is the GPS coordinate marked with red

- Alternatively, the image pixel corresponding to MAP POINT 1 and MAP POINT 2 can be entered in the X and Y columns
- After the positioning is finished and clicking on *Apply*, the image is placed correctly on the map (see Figure 6-69):

Figure 6-69: Positioned image

The positioning can be edited by clicking on *Position image* and removed by clicking on the X button (see Figure 6-70):

X						
Image file:						

Figure 6-70: Editing the loaded image

6.16 GPS QUALITY

Figure 6-71: GPS quality Instrument - Overview

The GPS quality instrument displays the number of visible and used satellites of GPS data which is acquired by a TRION[™]-TIMING or TRION[™]-VGPS-20/-100 module (see section 5.8) and further meta data. The used satellites are thereby the satellites with the best SNR. The NMEA data channel can be assigned to the GPS quality instrument. Normally, the NMEA data channel is called *GPS 1/1* per default and can be found on the top of the GPS data channels list:

⊻				GPS 1/1 GPS 1/1	TRION-TIMING		礅	\$GPRMC,070033.000,A,4651.6	NMEA	
				Latitude_GPS 1/1 GPS 1/1 GPS	Latitude		礅	46.860450 AVG	Latitude	
				Longitude_GPS 1/1 GPS 1/1 GPS	Longitude		礅	15.531567 AVG	Longitude	
				Altitude_GPS 1/1 GPS 1/1 GPS	Altitude		礅	2.890000e+2 AVG	Altitude	
				Velocity_GPS 1/1 GPS 1/1 GPS	Velocity		礅	NaN AVG	Velocity	
				Heading_GPS 1/1 GPS 1/1 GPS	Direction		礅	2.926000e+2 AVG	Direction	
				Satellites_GPS 1/1 GPS 1/1 GPS	Satellites		礅	4.000000 AVG	Satellites	
				Fix Quality_GPS 1/1 GPS 1/1 GPS	Quality		礅	GPS	Quality	
				H. Dilution_GPS 1/1 GPS 1/1 GPS	HDOP		礅	1.000000 AVG	HDOP	
				SoD_GPS 1/1 GPS 1/1 GPS	Second		礅	2.523300e+4 AVG	Second	
				Date_GPS 1/1 GPS 1/1 GPS	Date		礅	2018-01-01 07:00:33.000	Date	
				Acceleration_GPS 1/1 GPS 1/1 GPS	L Acceleration		礅	NaN AVG	Acceleration	
				Distance_GPS 1/1 GPS 1/1 GPS	Distance		礅	NaN AVG	Distance	
	Figure 6-72: GPS NMEA data channel									

Besides the satellites plot, the following meta data which is contained in the NMEA string can be displayed in the GPS quality instrument:

- Latitude
- Longitude
- Altitude
- Velocity
- Heading
- Satellite used
- Satellites in view
- Quality
- Dilution

The following Figure 6-73 explains the meaning of the three black circles with the same center point in the satellites plot:

Figure 6-73: GPS quality instrument - Explanation of the satellites plot

The deselection of the instrument property *Extended View* reduces the content of the GPS plot Instrument to the satellites plot:

Figure 6-74: GPS quality instrument - Extended View selected

Figure 6-75: GPS quality instrument - Extended View de-selected

6.17 SPECTROGRAM

Figure 6-76: Spectrogram – Overview

The Spectrogram may be used to display the time dependent signal trend of a FFT amplitude or phase channel that was created with the FFT math (for details, please refer to section 5.3.6). The elapsed time is displayed on the X-Axis, the frequency on the Y-Axis and the amplitude of the signal is Color-Coded to the Z-Axis (Left instrument in Figure 6-76).

Remark: Only 1 FFT amplitude or phase channel can be assigned to one single Spectrogram.

The Spectrogram has the following Instrument Properties:

- Time Axis Orientation: Horizontal orientation assigns the time axis to the X-Axis of the instrument (see left instrument in Figure 6-76)and Vertical orientation assigns the time axis to the Y-axis of the instrument (see right instrument in Figure 6-76).
- Time Axis Format: This property changes the format of the X-Axis. The user can select between *Auto, Absolute time* and *Relative time*.
 - *Auto*: In Sync Mode, the Auto time format is the Absolute time, otherwise the Auto time format is the Relative time
 - o Absolute time: The unit of the X-Axis is the actual time of day set in the OS settings
 - *Relative time*: The unit of the X-Axis is the relative time starting with 0:00 for every new measurement
- Time Axis Duration: Select the Time interval that shall be plotted on the Time Axis here. The Clear button deletes the actual displayed data from the instrument.
- Frequency Axis: Select the upper and lower frequency the of the plotted data here
- Gradient: Select a color scheme here. The color intensity can either be changed by entering the value in this menu or by moving the color bar within the instrument up or down while keeping the left mouse button pressed.
- Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*)

6.18 POWER GROUP

OXYGEN Power is the up to date Power Analyzer software add-on for DEWETRON OXYGEN Measurement Software. For a detailed explanation of the functionality and usage of the Power module, please refer to the manual DEWETRON_Oxygen_Power_Technical_Reference_Rx.x.

7 TRIGGERED EVENTS

ø	Triggered Events
	Recording Mode MAYLOBM Ordenwood Ordenwo
	STATSTCS

Figure 7-1: *Trigger Events* Menu – Overview

OXYGEN provides two different recording modes: The *Waveform* Recording and the *Statistics* Recording.

The *Waveform* Recording stores all channels that are enabled for recording @full sample rate into the data file.

The *Statistics* Recording stores only the statistical values MIN, MAX, AVG and RMS of an adjustable time window between 0.1 and 10 seconds into the data file. The Statistics Recording is also only done for the input channels that are enabled for recording.

Both recording modes can be enabled independently. The default software setting enables both *Continuous Waveform* Recording and *Statistics* Recording (Statistics window: 1 second).

If the user does not want OXYGEN to enable *Waveform* Recording for the complete recording time but only when certain input signal levels are reached, he can control that with the *Event Based Waveform* Recording (=Triggering) which is explained in the following sections.

7.1 ADDING A TRIGGER EVENT

Recording Mode	Recording Mode			
Waveform recording Triggered	WAVEFORM			
Harconniccolonia, magarca	Continuous	Pre-time	0	S
Statistics recording, Disabled		Stop after	0	s
	Event based			
+ Add Event	O Disabled	No valid recording sta	rt action defined!	
	Disabled			

Figure 7-2: Enable Trigger Mode

If the Event Based Recording is activated, the user must add one or several Trigger Events that regulate the recording start. This can be done via the +Add Event button (see Figure 7-2). Optionally the user can also store the data before the trigger event was reached by adding a *Pre-time* between 0 and 10 seconds and he can also define a time after which the record is stopped automatically again (*Stop after*).

7.2 Adding an Event Condition

After an event was added, the user must define an event condition and assign a data channel that is surveilled by the event condition:

≔	Recording Mode	Event 1	Condition: Al 2/1 Sim >= 0	« » x
0	Waveform recording, Continuous	CONDITION TYPE		CHANNELS
5	Statistics recording, Window 1s			All Search
¥	Event 1	Level HIGH Level LOW Window IN Window OUT	Keyboard Time 2	DI 1/13 Sim
		CONDITION 3		DI 1/15 Sim
-	+ Add Condition	Threshold 0	DI 1/16 Sim	
đ	Start recording	Rearm level 0		CNT 1/1 Sim
	+ Add Action			(CNT 1/1 Sim)
٦	+ Add Event			(Prequency_CNT 1/1 Sim) Angle_CNT 1/1 Sim Speed_CNT 1/1 Sim CNT 1/2 Sim CNT 1/2 Sim (CNT 1/2 Sim)

Figure 7-3: Define an Event Condition and Trigger on Level HIGH

The channel to be triggered on can be selected from the channel list on the right screen side (see (1) in Figure 7-3). The user can select between five different event conditions (see (2) in Figure 7-3):

- Level HIGH: Activate Event if selected signal exceeds defined Threshold. A *Rearm* Level that must be passed before the trigger is activated again can optionally be defined (see ③) in Figure 7-3).
- Level LOW: Activate Event if selected signal falls below defined Threshold. A *Rearm* Level that must be passed before the trigger is activated again can optionally be defined (see Figure 7-4).

 Window IN: Activate Event if selected signal is within a certain range. The user can define an upper and a lower limit (see Figure 7-5).

Figure 7-5: Trigger on Window IN

 Window OUT: Activate Event if selected signal is out of a certain range. The user can define an upper and a lower limit (see Figure 7-6).

Figure 7-6: Trigger on Window OUT

Keyboard Event: Control Trigger via the keyboard. The user can select two different states: True while hold activates the Event if the selected key is pressed and Toggle when pressed toggles between activating and deactivating the Event every time the button is pressed. The key can be selected with a click on the field right to Shortcut. In this example, the Space key was selected.

Figure 7-7: Trigger on Keyboard Event

Time Event: The event is activated in the dependency of a time condition. In the example in Figure 7-8, the event is activated every 30 minutes for a duration of 1 minute. If the Active for option is not enabled, the Event will be active for one Sample interval, i.e. for 1 ms if the sample Rate is 1 kHz. The red indicator (see (1) in Figure 7-9) won't highlight if the Active for option is not enabled.

Figure 7-8: Trigger on Time Event

Remarks:

- The red indicator shows if the respective event is active or not (see (1) in Figure 7-9)
- The blue switch deactivates the event permanently (see (2) in Figure 7-9)
- The deletes the event (see (3) in Figure 7-9)
- It is possible to add several Event Conditions to the same event

7.3 ADDING AN EVENT ACTION

After the Event Condition is configured the user must define an action that shall be performed when the event is activated, the *Event Action*. Four different actions are available: A *Record* action, an *Alarm* action, a *Marker* action and a *Snapshot* action. Each action has a submenu with different possibilities that are explained in the following sections.

Remark: It is possible to add several Event Actions to the same Event

7.3.1 RECORD ACTION

Figure 7-10: Trigger - Recording Actions

- *Start Recording*: Starts the recording mode when the event is activated
- Pause Recording: Pauses the recording mode when the event is activated
- *Record Event*: Recording is enabled if the event is active
- *Toggle Recording*: Toggles recording status if the event is activated

7.3.2 ALARM ACTION

ACTION TYPE	CHANNELS
Record Alarm Marker	
ACTION	
Add marker on Alarm	
Auto reset DD channels after 5 s,	
Digital out - HIGH on alarm	
O Digital out - LOW on alarm	
Figure 7-11: Trigger - Alarm Actions	

• Add marker on Alarm: A marker will be set when the event is activated

- Digital out HIGH on alarm: The status of a digital out channel will be set to High when the Event is activated. The channel(s) can be selected from the channel list on the right-hand side. An automatic reset of the channel after 0 3600 seconds can optionally be selected.
- Digital out LOW on alarm: The status of a digital out channel will be set to Low when the Event is activated. The channel(s) can be selected from the channel list on the right-hand side. An automatic reset of the channel after 0 3600 seconds can optionally be selected.

Remarks:

• To use connected digital channels as *Digital Out* channels the Channel Mode must be set to *Digital Out* in the *Data Channels* menu (see Figure 7-12).

·	8×	Active	Stored	Channel	Colo		Setup	Scaled V	alue	Mode
]			DEWE2-A4							
Y			TRION-BASE							
	\checkmark		DI 1/1 Sin	1 TR	ON-BASE		÷	0.499800	AVG	Digital Out
			DI 1/2 Sin	n TR	ON-BASE		\$	0.500200	AVG	Digital In
			DI 1/3 Sin	n TR		Ì	\$	0.499800	AVG	Digital Out

Figure 7-12: Changing the channel mode of a digital channel

The number of alarms is counted and displayed in the Action bar. To quit the alarms, click on the bell symbol in the action bar and click on the green check mark (see Figure 7-13).

An Alarm Action can also be selected if Continuous Waveform Recording is enabled and does not have to be event based.

7.3.3 MARKER ACTION

Figure 7-14: Trigger - Marker Action

This action adds a marker with a user defined marker text.

- On active only: Marker is only set if the event is activated
- On inactive only: Marker is only set if the event is deactivated
- On active and inactive: Marker is set if the event is activated and if the event is deactivated

Remark: A Marker Action can also be selected if Continuous Waveform Recording is enabled and does not have to be event based.

7.3.4 SNAPSHOT ACTION

	-``						
Record	Alarm	Mar	ker	Snapshot			
ACTION							
Actual value			O Average value				
MIN value				X value			
O RMS value				RMS value			
O Peak2Peak value							
Snapshot window 1	5						

Figure 7-15: Trigger - Snapshot Action

The Snapshot action can be used to query the Actual Value, Average, MIN, MAX, RMS, ACRMS or Peak2Peak value of one or several channels that may be selected on the right-hand side of the menu (see 1) Figure 7-3) and copy this value to a new channel. This channel is added to the Channel List and can be found in the *Snapshot: Event x* section (see Figure 7-16). If a statistical value is selected, the calculation time interval can be defined in the *Snapshot window* input field (see Figure 7-15). The time interval is applied prior to the activation of the event.

Figure 7-16: Snapshot channel in the Channel List

Remark: The same snapshot action can be applied to several channels by selecting them in the Channel list on the right-hand side (see Figure 7-17). An own snapshot channel for each selected channel is created in the Channel List (see Figure 7-18).

Waveform recording, Continuous	ACTION TYPE		CHANNELS
Statistics recording, Disabled			All Search
Event 1			TRION-2402-MILITI-4-D
Shortcut: Space (Hold)	Record Alarm Man	rker Snapshot	Al 2/1 Sim
+ Add Condition			Al 2/2 Sim
(Pa Snapshot of AI 2/3 Sim, AI 2/4 Sim, AI 2/1 Sim, AI 2/2	Actual value	O Average value	Al 2/3 Sim
Sim	MIN value	MAX value	Al 2/4 Sim
Record event	O BMS value	ACRES value	TRION-DI-48
+ Add Action			DI 3/1 Sim
	Peak2Peak value		DI 3/2 Sim
+ Add Event	Snapshot window 1 s		DI 3/3 Sim

Figure 7-17: Selecting several channels in the Snapshot Action menu...

		Snapshot: Event 1					
		Al 2/3 Sim_ACT Al 2/3 Sim	Snapshot	۵	NaN -10	AVG	ACT
		Al 2/2 Sim_ACT	Snapshot	۵	NaN -10	AVG 10	ACT
		Al 2/1 Sim_ACT	Snapshot	۵	NaN -10	AVG 10	ACT
		Al 2/4 Sim_ACT	Snapshot	٥	NaN -10	AVG	ACT

Figure 7-18: ...will result in an own snapshot channel in the Channel List for each selected channel

7.4 ARMING THE TRIGGER

If Event Based Waveform Recording is selected, a flash will appear within the sign of the record button (see Figure 7-19).

Figure 7-19: Action bar with enabled Event Based Waveform Recording

After pressing the record button, the *Event Based Waveform* Recording is armed and the recording will be started and paused according to the defined trigger events. Measurement data will be written to ONE data file.

Remark: If the trigger condition is active while arming the trigger, the trigger will not be detected as the trigger condition is not passed.

7.5 APPLICATION EXAMPLES

7.5.1 EVENT BASED WAVEFORM RECORDING TRIGGERED BY AN INPUT CHANNEL

7.5.1.1 Example 1

Challenge: Start Recording when the value of a certain analog input channel exceeds 1 and Pause Recording again when the value exceeds 2.

Select *Event based Waveform Recording* as Recording Mode (see Figure 7-20):

Recording Mode
WAVEFORM
Continuous
• Event based
Disabled

Figure 7-20: Event based waveform Recording selection

Select Level High as Condition Type and set the Threshold to 1. Select the analog input channel to be triggered on in the Channel List on the right-hand side (see Figure 7-21):

Event 1	Condition: Al 2/1 Sim >= 1			~~	>>	х
CONDITION TYPE		CHA	INNELS			
		All	Searc	h		-
		< _	> !×	Na	ne	
Level HIGH Level LOW Window IN Window OUT	Keyboard Time			EWE2-A4		
CONDITION				RION-BASE		
Threshold 1			· · ·	RION-2402-MUI	TI-4-D	_
Rearm level 0			V F	l 2/1 Sim		
		П		Il 2/2 Sim		
····		ш	- A	ll 2/3 Sim		
		П	- A	ll 2/4 Sim		
			>	RION-DI-48		
			>	RION-DI-48		
Figure 7-21: Level High Condition Type; Threshold: 1						

Select Start recording as Action Type (see Figure 7-22):

Record Alarm Marker Snapshot ACTION O Start recording O	ACTION TYPE				
Action Action Action Pause recording		- <u>`</u>			
Record Alarm Marker Snapshot ACTION O Start recording Pause recording			r		
ACTION Start recording Pause recording	Record	Alarm	Marker	Snapshot	
Start recording Pause recording	ACTION				
Start recording Pause recording					
	• Start recording			ause recording	
() Record event () Toggle recording	Record event		() To	oggle recording	

Figure 7-22: Start Recording Action Type

Select Level High as Condition Type and set the Threshold to 2. Select the analog input channel to be triggered on in the Channel List on the right-hand side (see Figure 7-23):

Figure 7-23: Level High Condition Type; Threshold: 2

Select *Pause recording* as *Action Type* (see Figure 7-24):

Event 2 ACTION TYPE					
	-``				
Record	Alarm	Ма	rker	Snapshot	
ACTION					
Start recording Pause recording					
C Record event			ОТод	gle recording	

Figure 7-24: Pause Recording Action Type

7.5.1.2 Example 2

Challenge: Record data every time the value of an analog input channel is within 1 and 2. The difference to the example above in section 7.5.1.1 is that in Example 1 data recording is not started when the value decreases below 2 and does not pause the recording when the value decreases below 1. In this Example 2, it is the case as well.

• Select *Event based Waveform Recording* as Recording Mode (see Figure 7-25):

Recording Mode	
WAVEFORM	
Continuous	
• Event based	
Disabled	

Figure 7-25: Event based waveform Recording selection

Select Window IN as Condition Type and set the Lower level to 1 and the Upper level to 2. Select the analog input channel to be triggered on in the Channel List on the right-hand side (see Figure 7-26):

Event 3 CONDITION TYPE	Condition: Al 2/1 Sim IN [12]	CHANNELS
Level HIGH	Keyboard Time	All Search
CONDITION Upper level _2 Lower level _1 		TRION-BASE TRION-BASE Al2/1 Sim Al2/2 Sim Al2/4 Sim Al2/4 Sim TRION-DI-88

Figure 7-26: Window In Condition Type; 1...2

Select Record Event as Action Type (see Figure 7-27): ACTION TYPE

Record	Alarm	Marke	r	Snapshot	
ACTION					
O Start recording		(O Paus	e recording	
Record event			🔵 Togg	le recording	

Figure 7-27: Record Event Action Type

7.5.2 TIME TRIGGERED DATA RECORDING

Challenge: Record data every 60 minutes for 2 minutes.

• Select *Event based Waveform Recording* as Recording Mode (see Figure 7-28):

Recording Mode	
WAVEFORM	
Continuous	
• Event based	
Disabled	

Figure 7-28: Event based waveform Recording selection

Select the *Time* Condition and enter 1h as *Time interval* and enable *Active for 2 minutes* (see Figure 7-29):

Waveform recording, Triggered	CONDITION TYPE					
Statistics recording, Disabled		<u> </u>				
Event 1	Level HIGH	Level LOW	Window IN	Window OUT	Keyboard	Time
Time: Interval set to 01:00:00, Hold set to 00:02:00	CONDITION					
+ Add Condition	Trigger interval	1	h.:.0	min : 0	s	
Record event	Active for	0	h : 2	min : 0	S	

Figure 7-29: Recording every 60 minutes for 2 minutes

• Select *Record Event* as *Recording Action Type* (see Figure 7-30):

🛢 Recording Mode	Event 1
Waveform recording, Triggered	ACTION TYPE
Statistics recording, Disabled	
Event 1	Record Alarm Marker Snapshot
Time: Interval set to 01:00:00, Hold set to 00:02:00	ACTION
+ Add Condition	Start recording
Record event	Record event Toggle recording
+ Add Action	

Figure 7-30: Record Event Action Type

7.5.3 DATA QUERY USING THE SNAPSHOT ACTION

Challenge: When the space key is pressed, the RMS value 0.5s prior to the event of 4 analog input channels shall be queried using the snapshot action. When the space button is pressed, a maker shall be added to the time position and a Digital Out channel shall be set to High state.

Select *Continuous Waveform Recording* as Recording Mode (see Figure 7-19):

	Recording Mode
V	VAVEFORM
	• Continuous
	Event based
	Disabled

Figure 7-31: Continuous waveform Recording selection

Select Keyboard Condition Type and True while hold as Condition State with the Space key as Shortcut (see Figure 7-32):

CONDITI	ON TYPE					
ッ	<u> </u>		<u>~</u>	<u></u>		J
Level	HIGH	Level LOW	Window IN	Window OUT	Keyboard	Time
CONDITIO	DN					
• True while hold						
State Toggle when pressed						
Shortcut Space						

Figure 7-32: Space key Condition type

Select Snapshot as Action Type and select RMS value as Action with a Snapshot window of 0.5s. The analog input channels used for the data query can be selected in the channel list on the right-hand side (see Figure 7-33). Data will be queried in the moment the Event configured above is activated.

ACTION TYPE		CHANNELS
		All Search
Record Alarm Marke	er Snapshot	TRION-2402-MULTI-4-D
ACTION		V 702/2000
		Al 2/2 Sim
Actual value	Average value	Al 2/3 Sim
MIN value	MAX value	Al 2/4 Sim
RMS value	ACRMS value	TRION-DI-48
	0	DI 3/1 Sim
Peak2Peak value		DI 3/2 Sim
Snapshot window 0.5 s		DI 3/3 Sim

Figure 7-33: Snapshot Action Type

To set the Digital Channel to High state, add another Action by pressing the +Add Action button, select Alarm Action Type and select Digital out – High on alarm as Action. The Digital out channel to be set can be selected in the channel list on the right-hand side (see Figure 7-34). The channel mode of the desired Digital channel must be set to Digital out in the Channel List (see Figure 7-12)

Waveform recording, Continuous	ACTION TIPE	CHANNELS
Statistics recording, Disabled		All Search
Event 1 -	Record Alarm Marker Snapshot	LocalNode DEWE2-M4
Shortcut: Space (Hold)	action	TRION-BASE
+ Add Condition	Add marker on Alarm	DI 1/1 Sim
Snapshot of Al 2/1 Sim, Al 2/2 Sim, Al 2/3 Sim, Al 2/4	Auto reset DO channels after _55	
ALARM, set 1 channel(s) to HIGH	Digital out - HiGH on alarm	
Add Marker "Event 1" (Active)	Digital out - LOW on alarm	
+ Add Action		

Figure 7-34: Alarm Action Type

To add a Marker in the data file at the instant of time the Event is activated and data is queried, add another Action by pressing the +Add Action button, select Marker Action Type and select On active only as Action. A marker is now added when the Event is activated.

Recording Mode		Event 1		
rm recording, Continuous		ACTION TYPE		
ics recording, Disabled		9	·``	
			Ē	r
Event 1		Record	Alarm	Marker
Shortcut: Space (Hold)	-	ACTION		
+ Add Condition		Marker text: Event 1		
Snapshot of Al 2/1 Sim, Al 2/2 Sim, Al 2/3 Sim, Al 2/4 Sim	-	On active only		
ALARM, set 1 channel(s) to HIGH	-	On inactive only		
Add Marker "Event 1" (Active)	-	On active and in	active	
+ Add Action				

Figure 7-35: Marker Action Type

7.6 EVENT BASED WAVEFORM RECORDING AND STATISTICS RECORDING

A very useful combination is the *Event Based Waveform* Recording in combination with the *Statistics* Recording. Especially over long measurement periods with rare trigger events, the *Statistics* Recording gives the user the guarantee that data was recorded without consuming much hard disk space. In the data file, the waveform data is plotted when the trigger event was active and otherwise the *MIN* and *MAX* value of the *Statistics* Recording data (see Figure 7-36).

Figure 7-36: Event Based Waveform Recording (marked in red) and enabled Statistics Recording

7.7 AUTOMATIC MEASUREMENT START

OXYGEN offers the possibility to start the measurement automatically after the software has started. To activate the Automatic measurement start, enlarge the Triggered Events menu to the full screen and check *Start measurement automatically* in the *Advanced Settings* (see Figure 7-37).

\$		Triggered Events
≔	Recording Mode	Recording Mode
	Waveform recording, Continuous Statistics recording, Window 1s + Add Event	O Continuous Pre-time 0 s, Current based Stop after 0 s,
<u>r</u>		STATISTICS
2 ++		Enabled Statistics window 1 s, Disabled
		BEHAVIOUR
Ð		
		ADVANCED SETTINGS

Figure 7-37: Triggered Events menu, Automatic measurement start

In case of *Continuous Waveform Recording* (please refer to section 7), the measurement will start automatically after OXYGEN has started and makes the manual press of the Recording button obsolete (see 4 in Figure 2-1).

As DEWETRON measurement systems start automatically after they are connected to a power supply, the measurement can start automatically after the measurement system is powered without any interaction of the user. OXYGEN must be added to the Windows *Autostart* applications for this procedure.

In case of *Event based Waveform Recording* (please refer to section 7 and section 7.3.1), the measurement will start automatically when the Start Recording condition (see section 7.3.1) is active. Therefore, it is not necessary to arm the trigger manually any more (see section 7.4).

8 EVENT LIST

Figure 8-1: Adding a Marker

During an active recording, the user can add markers in its measurement to add additional information at a certain point of time. Therefor the user must click on one of the both buttons marked in Figure 8-1 and a popup window will appear. In this window, the user can add the additional information to the marker. After clicking on *OK*, the marker will show up in the Event List. This list will also be saved to the data file. When a data file is reviewed in the *PLAY* mode, the Markers are displayed in the Overview bar as well as in a Recorder Instrument and will show up in the Event List (see Figure 8-2). Further markers can be added in the *PLAY* mode as well.

Remarks:

- The Marker option is only available in the *REC* mode and in the *PLAY* mode, not in the *LIVE* mode
- If Markers are generated with the Marker Action during Event triggering (see section 7.3.3), they will show up in The Event List as well
- To remove a marker again just select the respective one in the Event List and click on the *Remove* button which is located next to the *Add* button
- In the PLAY mode, the orange cursor jumps to the individual Event by clicking on the Time of the Event in the Event List

9 EXPORT SETTINGS

In PLAY mode, the user can export the recorded data to a *.csv-file, a *.txt-file, a *.dmd-file, a *.mdf4-

In *PLAY* mode, the user can export the recorded data to a *.csv-file, a *.txt-file, a *.dmd-file, a *.mdf4file or a *.mat-file. The user can select the channels to be exported in the channel list displayed in the Export Settings (Figure 9-1).

9.1 EXPORT ACTIVE RECORDER REGION OR BETWEEN CURSORS

The user has the possibility to only export the active recorder region of the selected recorder or the region between the cursors. Depending on whether the cursors are activated one of the following options to export (see Figure 9-2) can be seen. This option is available for all file formats.

OPTIONS	OPTIONS
CSV	CSV
Decimal separator	Decimal separator
CSV delimiter	CSV delimiter ,
Separate header row for units	Separate header row for units
Use absolute timestamps	Use absolute timestamps
✓ Waveform ✓ Statistics	✓ Waveform ✓ Statistics
Export active recorder region	Export region between cursors
Export	Export

Figure 9-2: Export active recorder region or between cursors

Remark: these options are only available if the export menu is <u>not</u> enlarged and opened to full size. If the menu is enlarged to full size or these options are deactivated the whole recorded data will be exported.

9.2 EXPORT OPTIONS FOR A *.CSV-FILE

If *.csv is selected as format, the user has the following additional options (see Figure 9-1):

- Choose between Decimal separator '.' and ','
- Choose between CSV delimiter ',' and ';'
- Selection of Separate header row for units will write the units in a separate row below the channel names
- Select *Use absolute timestamps* or export relative timestamps
- Select if *Waveform* data and/or *Statistics* data shall be exported

9.3 EXPORT OPTIONS FOR A *.TXT-FILE

If *.txt is selected as format, the user has the following additional options (see Figure 9-3):

Txt		4
Decimal separator	·	
Separate header r	ow for units	
Use absolute time:	itamps	
Vaveform	Statistics	
Header fields		
V Events		
Recording start/d	uration	
Export channel lis	t	
Export active reco	rder region	
E	xport	

Figure 9-3: Export Options for a *.txt-file

- Choose between Decimal separator '.' and ','
- Selection of Separate header row for units will write the units in a separate row below the channel names
- Select *Use absolute timestamps* or export relative timestamps
- Select if *Waveform* data and/ or *Statistics* data shall be exported
- Select if the *Header fields* shall be exported to the file
- Select if the *Event List* shall be exported to the file
- Select if the *Recording start* and the *Recording duration* shall be exported to the file
- Select if the *Channel List* shall be exported to the file

9.4 EXPORT OPTIONS FOR A *.DMD-FILE

If *.dmd is selected as format there are no additional options and all channels will be exported. This is a useful export tool for data reduction to export only the active recorder region or between the markers. For details see section 9.1.

9.5 EXPORT OPTIONS FOR A *.MDF4-FILE

If *.mdf4 is selected as format, the user has the following additional options (see Figure 9-4):

Figure 9-4: Export options for a *.mdf4-file

- Select if the data shall be exported to the compressed *mdf4.1* or the uncompressed *mdf4.0* format
- Select if the *Event List* shall be exported to the file
- Select if the *Header fields* shall be exported to the file
- Select if *Waveform* data and/ or *Statistics* data shall be exported

9.6 EXPORT OPTIONS FOR A *.MAT-FILE

If *.mat is selected as format, the user has the following additional options (see Figure 9-5):

OPTIONS	
Matlab	
Compressed	Normal
 Export events 	✓ Header fields
✓ Waveform ✓	Statistics
Export active rec	order region
	Export

Figure 9-5: Export options for a *.mat-file

Choose between Compressed and Normal export Compressed: The *.mat-file will be compressed during export. Thus, the Compressed export will take more time than the Normal export Normal: The *.mat-file will not be compressed during export. Thus, the Normal export will be

quicker than the *Compressed* export, but the resulting *.mat-file is larger

- Events and Header data will be exported per default. The check boxes are only displayed for information purpose
- Select if *Waveform* data and/ or *Statistics* data shall be exported

9.7 EXPORT OPTIONS FOR A *. EXCEL (XLSX)-FILE

OPTIONS Excel Separate header row for units Use absolute timestamps Waveform Statistics Export active recorder region Export...

OPTIONS

If Excel is selected as format, the user has the following additional options (see Figure 9-5):

Figure 9-6: Export options for an Excel-file

- Selection of Separate header row for units will write the units in a separate row below the channel names
- Select *Use absolute timestamps* or export relative timestamps
- Select if Waveform data and/ or Statistics data shall be exported

Remark: As the number of lines on one Excel spreadsheet is limited to 1048576 (2²⁰) the data will be written to a new spreadsheet if this limit is reached.

9.8 AUTOMATIC DATA EXPORT AFTER MEASUREMENT END

OXGYEN offers the possibility to export the data automatically after the measurement is finished in one of the above specified file formats including their above specified export options.

To activate the automatic export function, proceed the following steps:

• Open the Export menu and enlarge it to the full screen (see Figure 9-7):

ø					Export Settings		
	CHAN	INE	LS		OPTIONS 2		
:=	All Search			Search	Excel		
0	-	<	>	1 Name 0	or Separate header row for units		
E.			Loc	alNode	Use absolute timestamps		
			~ D	EWE2-A4	✓ Waveform ✓ Statistics		
-		Π	~	TRION-VGPS-20-V3	Export		
		H		DI 1/1 Sim			
		Π		DI 1/2 Sim	AUTOMATIC EXPORT 3		
*		П		DI 1/3 Sim	Export on measurement end		
		П		DI 1/4 Sim	Auto-export folder:		
		Н		DI 1/5 Sim	La, DRIAY		
(i)		Π		DI 1/6 Sim			
		П		DI 1/7 Sim			
		Π		DI 1/8 Sim			
		П	ľ	CNT 1/1 Sim			
		Π		Angle_CNT 1/1 Sim			
				Speed_CNT 1/1 Sim			
		Π	►	GPS 1/1 Sim}			
		Ш	~	TRION-CAN-4			
				CAN 2/1 Sim			
				CAN 2/2 Sim			
				CAN 2/3 Sim			
				CAN 2/4 Sim			

Figure 9-7: Export menu, Auto-export settings

- Select either all or individual channels that shall be exported automatically after the measurement is finished (see (1) in Figure 9-7) by checking the certain checkboxes on the left-hand side
- Select the desired file format and its individual export options (see 2) in Figure 9-7). For details about the export options, please refer to section 9.2 for *.csv-files, section 9.3 for *.txt-files, section 9.4 for *.dmd-files, section 9.5 for *.mdf4-files, section 9.6 for *.mat-files and section 9.7 for *.xlsx-files.
- Check the checkbox *Export on measurement end* (see ③ in Figure 9-7)
- Specify the desired directory the export files shall be stored to (see ④ in Figure 9-7)

10 THE SCREENS MENU

In the *Screens* menu, the user can organize its measurement screens. By a single click on the icon, a small overview about all created measurement screens will appear like it is shown in Figure 10-1. The user can add and delete measurement screens by clicking on the + and - signs on the lower end of the *Screens* menu.

To change the currently displayed measurement screen, just click on the desired one in the overview. It is possible to change the order of several measurement screens by selecting the respective screen and keeping the mouse button pressed for 2 seconds. After two seconds, the blue frame will become bold. Now it is possible to change the order of the selected screens to any desired position by keeping the mouse button pressed and moving the screen.

The user can enlarge the *Screens* menu to the whole screen to see several measurement screens simultaneously (see Figure 10-2). Therefore, just click on the *Screens* menu bar and move it to the right side while keeping the mouse button pressed.

If several monitors are used, it is possible to undock a screen and move it on another monitor. Therefor the user must select the desired screen and keep the mouse button pressed for 2 seconds again. When the blue bold frame appears, the user can move the screen to another monitor and release it there.

The *yellow cursor* which is displayed in the Overview bar and the Recorders is linked to all instruments on any screen. I.e. If the yellow cursor is moved in a Recorder on screen 1, the value displayed in a Digital Meter on screen 3 will update according to the actual position of the yellow cursor position.

Figure 10-2: Measurement screens enlarged to the whole screen

Remark: The system performance may slow down while the Screens menu is partially open

The buttons on the lower end of the *Screens* Menu (see Figure 10-3) have the following functionalities:

Figure 10-3: Pushbuttons in the Screens Menu

1	Add Screen	Add an empty measurement screen beyond the last screen	
2	Copy Screen	Copy selected screen beyond the last screen	
3	Delete Screen	Delete selected Screen	
4	No functionality in OXYGEN 3.x		
5	Export	Export selected screen as *.png or *.jpg-file	
	selected		
	screen		
6	Copy to	If no Instrument is selected, the actual screen will be	
	Clipboard	copied to clipboard. If an Instrument is selected, only the	
		selected Instrument will be copied to clipboard	

Table 10-1: Functionality of the pushbuttons in the Screens menu

11 THE REPORTING TOOL

Figure 11-1: The Reporting Tool – Overview

A powerful feature of OXYGEN is the *Reporting* tool. This tool offers the user the possibilities to create reporting pages directly from the measurement screen. This feature can be used in the *REC* mode as well as in the *PLAY* mode and in the *LIVE* mode.

11.1 CREATING A REPORT

To create a report, the user can either

- Copy a complete measurement screen to the report with the following steps
 - Select the desired measurement screen within the screens menu and display it (see Figure 11-2)

Figure 11-2: Display the measurement screen that shall be copied to the report

• Open the small-view of the Report menu (see Figure 11-3):

Figure 11-3: Open the small-view of the Reporting menu

• Click the copy button at the lower end of the Reporting menu (see Figure 11-4 or (2) in Figure 11-10)

Figure 11-4: Click the Copy button

• The entire measurement screen is now copied to the report as a new report page (see Figure 11-5):

Figure 11-5: Measurement screen added to the report

Select and copy single instruments from the measurement screen via CTRL+C (see Figure 11-6) and paste it to the repot page via CTRL+V (see Figure 11-7)

Figure 11-6: Copying single instruments from the measurement screen...

Figure 11-7: ... to the report page

• Activate the *Design Mode* and edit the report page like a measurement screen (see section 6.1)

11.2 REPORTING CURSOR

The *yellow cursor* is available on the reporting pages as well. On the measurement screens, the yellow cursor is linked to the instruments on all screens. This is different on report pages. Here, the yellow cursor is only linked to the instruments on the same report page and can therefore be placed on several positions of the data file on different pages:

Figure 11-9: Several yellow cursor positions within one report

11.3 MENU DESCRIPTION

The buttons on the lower end of the *Reporting* Menu (see Figure 11-10) have the following functionalities:

Figure 11-10: Pushbuttons in the Reporting Menu

1	Add Page	Add an empty page beyond the last page	
2	Сору	If a measurement screen is open (like in Figure 11-3),	
		the screen will be copied to the report as a new page.	
		If a report page is open (like in Figure 11-5), the	
		selected page will be copied beyond the last page	
3	Delete Page	Delete selected page	
4	Save as *.pdf	Saves the report as *.pdf-file; for export options,	
		enlarge the Reporting menu to the full screen	
5	Send to printer	Send the report to a printer; to select a printer,	
	-	enlarge the <i>Reporting</i> menu to the full screen	
6	Copy to	If no Instrument is selected, the actual page will be	
	Clipboard	copied to clipboard. If an Instrument is selected, only	
		the selected Instrument will be copied to clipboard	

Table 11-1: Functionality of the pushbuttons in the Reporting menu

Figure 11-11: Expanded Reporting Menu

1	Paper Orientation	Selection of Paper Orientation Portrait or Landscape
2	Paper size	Selection of Paper size A4 or Letter
3	Footer icon	Browse for an icon that will be added to the footer
4	Report Content menu	Specify if the whole report or only certain pages shall be printed
5	Selected Printer	Browse for a Printer
6	Print button	Sends the report to a printer
7	PDF-file	Browse for a folder and specify the filename
8	Save button	Saves the Report as *.pdf-file

Table 11-2: Expanded Reporting Menu - Functionality

Remark: It is possible to change the order of the pages by the same procedure as it was explained for the measurement screens: Select the respective page and keep the mouse button pressed for 2 seconds. After two seconds, the blue frame will become bold. Now it is possible to change the order of the selected page to any desired position by keeping the mouse button pressed and move the screen.

12 OXYGEN NET

Remarks:

- Please note that OXYGEN Net is an optional feature and only usable if a proper license which supports OXYGEN Net is installed on the PC.
- OXYGEN Net can be used to combine several DEWE2/3 systems connected to the same ethernet network to one entire high channel count measurement system. DEWE2/3 systems combined to an OXYGEN Net system can be synchronized and controlled with one *Master* unit.
- Glossary:
- Master unit: A measurement unit which queries data from another measurement unit and controls it is denoted as Master unit. Only one measurement unit can be configured as Master unit in an OXYGEN Net system.
- Slave unit: A measurement unit which transfers data to a Master unit and is controlled by it is denoted as Slave unit. Several measurement units can be configured as Slave unit in an OXYGEN Net system.
- ORION DAQ/DSA hardware is not supported with OXYGEN Net.

12.1 SUPPORTED HARDWARE TOPOLOGIES

The following topologies of synchronization and Data Transfer paths are supported within Oxygen. The main difference between these topologies is, if the single nodes are synchronized via TRION-SYNC-BUS or TIMING Modules, i.e. TRION[™]-BASE, -TIMING or -VGPS boards.

12.1.1 TRION-SYNC-BUS WITHOUT TIMING

This topology is free-running without any external synchronization source and all nodes are connected together with TRION-SYNC-BUS. This is the default setting and should be used, if no absolute timestamping is required. All the data acquired within the system is synchronous, but there is no reference to a 3rd party system.

Figure 12-1: Topology for TRION-SYNC-BUS without TIMING

An optional TRIONet must be connected to a measurement node via USB and TRION-SYNC-BUS.

12.1.2 TRION-SYNC-BUS WITH TIMING

In addition to the former topology, this one uses a TIMING-Module in the first measurement node. Use this topology, if you need to be synchronous to an absolute timestamp.

The Enclosure, which has installed the TIMING-Module, is automatically the master for TRION-SYNC-BUS for all other nodes.

12.1.3 TIMING WITHOUT TRION-SYNC-BUS

The third option is, to install a TIMING-Module in every node. Use this topology, if the distance between each node exceeds the limit of TRION-SYNC-BUS, or the use of a cable is not capable (e.g. mobile measurements)

Figure 12-3: Topology for TIMING without TRION-SYNC-BUS

An optional TRIONet must be connected to a measurement node via USB and TRION-SYNC-BUS!

12.1.4 TIMING WITH IRIG OUT

The fourth option is to install a TIMING-Module in every node. Use this topology, if you need to be synchronous to an absolute timestamp and if other 3rd party hardware shall be synchronized to an IRIG signal in parallel. A TRION[™]-TIMING/VGPS-**V3** board is required to output IRIG with a DEWE2/s system. Only IRIG-B-DC signals can be output, others cannot be generated!

Figure 12-4: Topology of TIMING with IRIG OUT

An optional TRIONet must be connected to a measurement node via USB and TRION-SYNC-BUS!

Remark: A mixed usage of these topologies is not allowed and supported!

12.2 OXYGEN NET - MENU OVERVIEW

The OXYGEN Net menu is split up in three different sections: *Nodes, Sync* and *Settings*.

_		1
ø	Oxygen NET	Nodes
=	Nodes	OXYGEN-NET SYSTEM
 /ul>	Sync Settings	CAIRHEN OxygenNet V3.0 RCL IP: 192.168.22.139 Status: Not Claimable Local node
		AVAILABLE NODES Node filter: Available MorgenNet V3.0 RC1 IP: 192.168.22.24 Status: Available

12.2.1 OXYGEN NET MENU - NODES

Figure 12-5: OXYGEN Net menu – Nodes

In the *Nodes* menu, the user gets an overview about all measurement devices that are connected to the same ethernet network and have the OXYGEN Net option enabled. To enable and disable OXYGEN Net, please refer to section 12.2.3.

Devices with OXYGEN Net enabled and which allow to be claimed can be claimed and connected to the OXYGEN Net system. After claiming a device, it can be used in the OXYGEN Net system. Claimed devices are regarded as *Slaves*. Thus, claiming must always be done by the master device and must not be done by slave devices. For allowing and preventing measurement devices to be claimed, please refer to section 12.2.3. To claim a device, just click on the *Claim* button below the respective measurement device (see Figure 12-6).

Figure 12-6: Claim a measurement device

Claimed devices can be released from the OXYGEN Net system by clicking on the respective *Release* button (see Figure 12-7). After releasing the measurement device, it can be used as a standalone device again or connected to another OXYGEN Net system.

Figure 12-7: Release a measurement device

The Node filter (see Figure 12-8) filters the listed measurement devices according to *All, Available* or *Claimed* devices.

12.2.2 OXYGEN NET MENU - SYNC

∆ *ur	nsaved - Oxygen						- 0	ı x
\$	System Settings	Sync Setup						
	Measurement Setup	🗹 Auto setup					Internal: Loc	ked ໜ
:=	Header Data	DEWE2-A4		DEWE2-M4				
E	Advanced Setup	LocalNode		LocalNode				
	Hardware							
	Sync Setup							
	DAQ Hardware							
	Extensions and Plugins	SYNC IN Internal	SYNC OUT TRION (SYNC OUT)	SYNC IN TRION (SYNC I/O)	SYNC OUT TRION (SYNC OUT)			
÷	Remote Control							
	User Interface							
i	UI Options							
	Localization	SYNCHRONISATION	INPUT	SYNCHRONISATION OUTPUT				
	System Actions	Internal	TRION (SYNC I/O)	GPS	TRION (SYNC OUT))		
	Shutuown	ОРТР		O PPS	Frequency (AUX)			
								~~~



- Auto setup: Enable/Disable Automatic Setup of Sync.
- Enabled: The synchronization is done automatically by the DEWE2 enclosure. If the Master device does not have a measurement hardware (Notebook, PC), the first claimed Slave is automatically configured as Sync Master. Synchronisation is set to TRION-SYNC-BUS. No setting can be changed, as long as Auto setup is activated.
- Disabled: User can change all synchronization settings. Use this, if a TIMING-Module is installed
- Sync Status Indicator: See here the actual state of the overall system sync. Please refer to 12.7 for more information.

The Sync indicator will be

- Red, if no valid synchronization signal is connected to the SYNC I/O connector
- Orange, if a valid synchronization signal is connected to the SYNC I/O connector but the system is not locked yet (this might take some seconds and will be locked automatically)
- Green, if a valid synchronization signal is connected to the SYNC I/O connector and the system is locked.

The Sync indicator is available in the Action bar as well if the Sync Setup is closed (see (18) in Figure 2-1).

For details about the different synchronization settings and possibilities with different TIMING modules, please refer to section 4.4.

#### 12.2.3 OXYGEN NET MENU – SETTINGS

ø	Oxygen NET	Settings	
:=	Nodes	Enable Oxygen NET	
	Sync	Allow claim	
	Settings		
	Figure 12-10: OXYGEN Net menu – Settings		

In the *Settings* menu, the user can enable or disable the OXYGEN Net functionality and select if the measurement device shall be claimable or not.

If OXYGEN Net is disabled, the measurement device can neither be used as Master nor Slave unit in an OXYGEN Net system. Thus, the device is not visible for other users in the *Nodes* menu of other DEWE2/3 systems (see section 12.2.1). If OXYGEN Net is enabled, the device can either be used as Master or Slave unit and is listed in the Nodes menu of other DEWE2/3 systems.

If *Allow claim* is enabled, the measurement device can either be used as a Master unit or be claimed by another device and used as a Slave unit (see Figure 12-11). If *Allow claim* is disabled, the measurement device can only be used as a Master unit (and claim other devices) but not as a Slave unit (see Figure 12-12).







Figure 12-12: Visibility for other users if OXYGEN Net is enabled and Allow Claim is disabled

#### **12.3** SETTING UP AN OXYGEN NET SYSTEM

The following steps describe the procedure to configure several devices to an OXYGEN Net system. Possible hardware connection schemes can be found in section 12.1.

#### 12.3.1 GENERIC SETUP

Connect all measurement devices that shall be used with in the OXYGEN Net system to the same ethernet network and make sure that the IP addresses of all measurement devices are within the combined to one OXYGEN Net system. If the Devices are configured with DHCP and there is no DHCP-Server, the operating system fallback is used (IP-Adress Range 169.x.x.x)

**Remark:** The connection to the ethernet network must be finished before OXYGEN is started on the measurement devices!

Start OXYGEN on all measurement devices and Enable OXYGEN Net in the OXYGEN Net menu Settings (see Figure 12-13) on all devices

Ø	Oxygen NET	Settings	
	Nodes	Enable Oxygen NET	
	Sync	Allow claim	
	Settings		

Figure 12-13: Enable OXYGEN Net

Select Allow claim on the devices that shall be configured as slaves (see Figure 12-14). Without enabling Allow claim, the Slave units cannot be claimed by the Master unit.

态	Oxygen NET	Settings		
ъ <del>р</del> г		Enable Oxygen NET		
<b>i=</b>	Nodes	Allow claim		
0	Settings			

Figure 12-14: Allow claiming of slave devices

Go to the OXYGEN Net menu Nodes on the Master unit. In the Available Nodes section, all measurement devices with OXYGEN Net enabled are listed. By clicking on the Claim button (see Figure 12-15), the individual device is added to the OXYGEN Net system as a Slave unit and can be controlled by the Master unit.



Figure 12-15: Claiming of measurement devices

**Remark**: If a device should not be listed in the *Available Nodes* section though expected, please refer to section 12.7.

After claiming a device by the Master unit, it is listed in the OXYGEN Net System section (see Figure 12-16) of the OXYGEN Net menu Nodes and may be released from the OXYGEN Net system again by clicking on the Release button



Figure 12-16: List of claimed devices

• After claiming a device, the screen of the device will be locked, and the information *Claimed by...* will be displayed in the lower right corner of the software



Figure 12-17: Claimed information on the Slave device

#### 12.3.2 USE WITH TRION-SYNC-BUS

Connect the SYNC cables to the measurement devices. The Master measurement unit must be the Sync master within the OXYGEN Net system. Therefore, connect one end of the Sync cable to a SYNC OUT or SYNC I/O connector of the Master unit and connect the other end to a SYNC IN or SYNC I/O connector of the Slave unit. The Sync signal can be daisy chained to several Slave units (see Figure 12-18).



Figure 12-18: Sync wiring of different OXYGEN Net system variants

The cable for the synchronization signal must be connected from measurement device to measurement device and cannot be transmitted via an ethernet router.

• A green background color of the SYNC indicator on all devices will display that the sync wiring is correct



Figure 12-19: Correct sync wiring
**Remark:** If the background color of the *SYNC indicator* is orange, the sync wiring is incorrect. For further information, please refer to section 12.7.

- All Slave units are now synchronized to the relative time base of the Master unit and a measurement may be started by clicking the *Record* button on the Master unit
- Use a TIMING-Module in case, you need an absolute time base in the first (Master) system

### 12.3.3 USE WITH TIMING-MODULES ONLY

- Make sure, every DEWE2/3 has installed exact one TIMING-Module in the first slot (Star slot) (except TRIONet, there is no TIMING-Module supported in the case of Oxygen Net)
- Connect the Timing Source Signal (e.g. GPS Antenna, IRIG or PTP Grandmaster Clock)
- It is not necessary to use the same Source within every node, you can use GPS at the first node and PTP at the second node, see Figure 12-20.
- Go to Oxygen Net -> Sync and disable the *Auto setup* option
- Select the right TIMING Source for each Enclosure

<b>∆</b> *u	nsaved - Oxygen						- 🗆 ×
¢	Oxygen NET	Sync					
:=	Nodes	Auto setup				P	TP, GPS, IRIG: Locked 👀
	Sync	DEWE2-M4s	14	DEWE2-A4L	Tewer	2-A4L	Ŭ
0	Settings	B8140006 LocalNode		C6180133 DEWE2-A4L-41	C6180134 DEWE2-A	4L-42	
E,							
۶							
		SYNCIN	SYNC OUT	SYNCIN SYN	IC OUT SYNC IN	SYNC OUT	
			RION (SYNC OUT)	GPS TRION (	SYNC OUT) IRIG	TRION (SYNC OUT)	
*							
(i)							
,		SYNCHRONISATION INPUT			SYNCHRONISATION OUTPUT		
		Internal	TRION (SYNC I/O)	GPS	TRION (SYNC OUT)		
		• PTP		O PPS	Frequency (AUX)		
			0	0			
		CorrLimit	0.01	ms			
		DelayMechanism	End To End	4			
		Protocol	UDP_IPv4	<b>4</b> ,			
					U		

Figure 12-20: Sync View with TIMING-Modules. Select node to change settings

Inspect the Synchronization Indicator If an error occurs, please check the connection of the selected synchronization source (or the LED Indicator of the TIMING Module)

Error Messages:

• If the system is configured in a way, that is a not allowed topology, there is an Error Message:

ø	Oxygen NET	Sync		
:=	Nodes	Auto setup		Setup: No valid sync setup found for node DEWE2-A4L-42 👀
	Sync	DEWE2-M4s	DEWE2-A4L	DEWE2-A4L
	Settings	LocalNode	C6180133 DEWE2-A4L41	C6180134 DEWE2-A4L42
5				
Ŧ				
		SYNC IN SYNC OUT	SYNC IN SYNC OUT	SYNCIN SYNCOUT
		PTP TRION (SYNC OUT)	GPS TRION (SYNC OUT)	TRION (SYNC I/O) TRION (SYNC OUT)

Figure 12-21: No valid sync setup, with a hint, which node is not configured correctly

If there is a problem, that at least one Node can't be synchronized, there is the Error (Out of Sync) message. Please check each node individually!

## **12.4** SETUP GENERATION ON AN OXYGEN NET SYSTEM

- The measurement screens on the Master unit can be configured like on a standalone measurement unit. For details, please refer to section 6.1.
- Measurement screen configuration on Slave units can be configured like on a standalone measurement unit as well. For Setting up the measurement screen and the creation of software channels (like Power, Math Formulas,...), please use the Remote Desktop Connection or a VNC-Tool (we recommend UltraVNC).
- Data acquisition sample rate can differ from each Node. But the user has to take care that only integer multiple sample rates are set.
- Data Channels of a Slave unit can be configured via the Master unit. After claiming the Slave unit by the Master unit, the channels of the Slave unit will be visible and accessible in the Channel List of the Master unit. The example in Figure 12-22 shows a DEWE2-A4L-Slave unit (equipped with one TRION-2402-MULTI-4-D) connected to a Laptop-Master unit without TRIONTM hardware connected. When settings of a Slave unit channel are edited via the Channel List of the Master unit, the changes will be transferred to the Slave unit.



Figure 12-22: Slave unit channels visible in the Master units' Channel List

- The blue slider marked with an orange arrow in Figure 12-22 will activate or deactivate the data acquisition from the channel
- The red button marked with a green arrow in Figure 12-22 will enable the storing of the data
- The green button marked with a blue arrow in Figure 12-22 will enable the data transfer from the Slave unit to the Master unit.
- Figure 12-23 will show the following possible combinations:

Channel A1/1 will only be acquired but not stored or transferred. Data may only be used for math calculations on the Slave unit.

Channel A1/2 will be stored on the Slave unit but not on the Master unit

Channel A1/3 will be transferred to the Master unit but neither stored on the Slave unit nor on the Master unit. The channel may only be used for math calculations on the Slave unit or the Master unit.

Channel A1/4 will be transferred to the Master unit and stored both on the Slave unit and the Master unit.



Figure 12-23: Channel transfer and recording combinations

Remark: It is not possible to store a channel only on the Main unit and not on the Slave unit.

- When the setup is saved on a Master unit, the settings of the Slave unit are stored to the setup file on the Master unit, too. There is no separate setup file stored on the Slave unit. The file stored on the Main unit includes channel settings, screen configurations,... on the Slave unit.
- Math channels and Power groups must be created on the Slave units before claiming them by the Master unit. After claiming the Slave unit, these channels can be transferred and stored on the Master unit as well or used for other calculations on the Master unit.
- Math channels and Power groups that are created on the Master unit and include channels from the Slave unit are calculated on the Master unit. I.e. all calculations that are created on the Master unit are rendered on the Master unit. If they shall be rendered on the Slave unit, they must be created before claiming the Slave unit by the Master unit like it is explained in the paragraph above.
- It is not possible to transfer data from the Master unit to a Slave unit or between Slave units but only from the Slave units to the Master unit.
- If a setup file is loaded on the Master unit which contains an OXYGEN Net configuration, OXYGEN tries to claim the required Slave units automatically while the setup is loaded. OXYGEN must already be running on the Slave units and is not started automatically during the setup load. If the Slave unit can't be claimed, the hardware mismatch dialog will open (see Figure 2-4).

## **12.5** RECORDING DATA WITH AN OXYGEN NET SYSTEM

- After pressing the Record button on the Master unit, all transferred data channels and the data channels connected directly connected to the Master unit will be stored to one data file on the Master unit.
- After pressing the Record button on the Master unit, a local data file is created on each Slave unit containing all data channels (with the red Record button on the Channel List enabled) that are connected to the Slave unit.
- Triggered Recording is supported. Trigger Events can be defined on the Master. Individual trigger settings on a Slave unit will be ignored.
- Multi-File Recording is supported. If Multi-File Recording is enabled on the Master unit it will also be applied to the data file stored locally on the Slave units. Multi-File settings done on a Slave unit will be ignored.
- User reduced statistics recording is supported (see section 7). The user reduced statistics data are not transferred from the Slave units to the Master unit to avoid an increase of the data to be transferred. They are calculated on the Master unit for the Slave unit channels that are transferred to the Master unit.

• Prompting Header Data at recording start is only applicable to the Master unit, not to Slave units

## **12.6** ADDITIONAL INFORMATION

- Typical data transfer rates (80 MB/s):
- 16bit: up to 350 channels @ 100 kHz
- 24bit: up to 350 channels @ 50 kHz
- The Master unit can either be a measurement unit with TRIONTM hardware connected or a laptop without TRIONTM hardware connected to. If a laptop without TRIONTM hardware is used as Master unit, the first Slave unit claimed by the Master unit is defined as Sync master.
- The measurement devices must be connected to the same ethernet subnet before OXYGEN is started
- The sync wiring can be done before OXYGEN is started or when OXYGEN is already running
- The setup on the Slave units must be roughly prepared before claiming them, only existing channels can be configured from the master.
- If the hard disk of the Master unit is full, the recording will stop automatically on the Master unit and on all Slave units
- If the hard disk of a Slave unit is full, the recording will only stop on the affected Slave unit but not on the other devices
- If the software mode of the Master unit is switched to PLAY mode, because a data file is opened, the Slave units are released from the Master unit.
- The Node names are the operating systems host names. These can be edited in e.g. Windows under System -> Info -> Change PC Name

## **12.7** TROUBLESHOOTING

- If a device is not listed in the *Available Nodes* section as expected, make sure that
  - The Node filter is set to All or Available
  - OXYGEN Net is enabled on the missing measurement device
  - The network connection is working
  - The IP address of the missing measurement device is within the same subnet range
- If the sync wiring is incorrect, the background color of the SYNC indicator will be orange and the message Waiting for sync will be displayed in the lower right corner of the software (see Figure 12-24). If this appears, make sure that the sync wiring is correct. For further information, please refer to section 12.2.2 and Figure 12-18.





If the sync wire is disconnected during the measurement, a Sync Lost marker is added to the Event List and the message Waiting for sync will be displayed in the lower right corner of the software. The background color of the SYNC indicator will become orange.

-0.56	-0:50	-0:44	-0:38	-0:32	-0:26	-0:20	-0:14	Waiting for sync	-2 START SYNCLOST
REC 10.48:20 (UTC+2) 3/26/2018	searce	<b>A</b>   <b>L</b>					3		
Figure 12-25: Software feedback if sync signal is lost during the measurement									

Printing Version 1.0

The recording will be continued until the *Stop* button is pressed. Please be aware that the recording won't be time synchronous any more without valid sync connection!

A reconnection of the sync wire won't help to resync data during recording. The measurement must be stopped before data is time synchronous again.

If the sync wire is reconnected during the measurement, the SYNC indicator will become red and the message *Invalid synchronization signal* will be displayed in the lower right corner of the software.

20.0 kB stored (106.8 GB free, est. 2y 32d remaining)	Storing started: Mon Mar 26 10:48:16 2018 GMT+0200	A Invalid synchronization signal
REC SVIC 10.48:29 (UTC+2) 3/26/2018		8 & }

Figure 12-26: Software feedback if sync signal is reconnected during the measurement

- If a slave device loses the network connection during the measurement
  - The master device adds a *Node Lost* marker to the Event List and displays the message *Slave Node Lost:...* in the lower right corner of the software (see Figure 12-27)

0:02		•	NODE LOST	8	 (
<u>A</u> :	Slave node los	t: D	EWE2-A4L		

Figure 12-27: Software feedback on master device if slave node loses network connection

- The affected slave device adds a *Node Lost* marker to the Event List and opens a *Master Lost* popup menu (see Figure 12-28)

Master lost
Master node lost. Your can wait for the master node to return or unlock from master node (Recording will stay active).
Unlock from master node

Figure 12-28: Software feedback on slave device if slave node loses network connection

- If the user selects *Unlock from master node*, the recording will be continued until the *Stop* button is pressed and the slave device can be used as standalone unit
- If the network connection is fixed in the meantime, the popup window on the slave device will close again and the slave device can be controlled by the master device again. Data recording is still synchronous, because the sync connection was still active. A *Node found* marker will be added to the Event List
- The measurement on potential other slave devices is not affected and they do not realize that a slave node was lost
- If the master device loses the network connection during the measurement
  - The master device adds a *Node Lost* marker to the Event List and displays the message *Slave Node Lost:...* in the lower right corner of the software (see Figure 12-27)



Figure 12-29: Software feedback on master device if slave node loses network connection

- All slave devices add a *Node Lost* marker to the Event List and open a *Master Lost* popup menu (see Figure 12-28)

Master lost
Master node lost. Your can wait for the master node to return or unlock from master node (Recording will stay active).
Unlock from master node

Figure 12-30: Software feedback on slave device if slave node loses network connection

- If the user selects *Unlock from master node*, the recording will be continued until the *Stop* button is pressed and the slave devices can be used as standalone units
- If the network connection is fixed in the meantime, the popup window on the slave device will close again and the slave devices can be controlled by the master device again. Data recording is still synchronous, because the sync connection was still active. A *Node found* marker will be added to the Event List

## **12.8** LIMITATIONS OF OXYGEN NET WITHIN OXYGEN 3.7

- No data transfer between different Slave units or from Master unit to Slave unit. Data can only be transferred from Slave units to Master units.
- Disabling of redundant storing on the Slave unit is not possible. If a channel is transferred to the Master unit, and storing is activated, the data will always be stored on the Slave unit and the Master unit.

# **13 PSOPHOMETER**

## **13.1** INTRODUCTION

In telecommunications, a psophometer is an instrument that measures the perceptible noise of a telephone circuit.

The core of the meter is based on a true RMS voltmeter, which measures the level of the noise signal. This was used for the first psophometers, in the 1930s. As the human-perceived level of noise is more important for telephony than their raw voltage, a modern psophometer incorporates a weighting network to represent this perception. The characteristics of the weighting network depend on the type of circuit under investigation, such as whether the circuit is used to normal speech standards (300 Hz – 3.3 kHz), or for high-fidelity broadcast-quality sound (50 Hz – 15 kHz).

[https://en.wikipedia.org/wiki/Psophometer, 2019-04-15]

## **13.2** Setup

The Psophometer Plugin is installed with every Oxygen installation, starting from R3.5.1

*Please note that a dedicated plugin license is required for the calculation option to be visible.* 

## **13.3** USAGE

Select one or multiple channels as inputs for the Psophometer calculation.

Please note that input channels must have a sampling rate of 20 kHz or higher.

<b>∆</b> *la	st.dms - Oxygen										- 0	×
<b>©</b>	LocalNode	DEWE2-A4	4				M-POWER					
			<b>m</b>	$\odot \odot \odot$	00	000	10					
0			7	• • • .	CH 2 CH 3	CH 4	TINN-0581					
E.			-	CH 1	CH 3	Сн 5 Сн 6	1620-ACC					
4	All 🔬 Sei	arch	<b>7</b> x -E	4 channels selecte	d		<	<				• <b>&gt;&gt;</b>
	< > !>	Active   Stored	a	Channel	:  Color   Setu	ip   Scaled Val	lue	Mode	I Sample Rate	Range	Scaling	+
	⊻ □	LocalNode										B
		DEWE2-A4										Advar
-		TRION-1620-A	AL 1/1 Sin	n		0.000000	AVG				Scale: 1 Unit: V	
			AI 1/1 AI 1/2 Sin	TRION-1620-ACC-6-B		-0.000000	AVG	Voltage	20000 Hz	-100 V 100 V	Offset: 0 Scale: 1 Unit: V	
			AI 1/2 AI 1/3 Sin	TRION-1620-ACC-6-B		-10	AVG	voitage	20000 Hz	-100 V 100 V	Offset: 0 Scale: 1 Unit: V	
í			AI 1/3 AI 1/4 Sin	TRION-1620-ACC-6-8		-100	AVG	Voltage	20000 Hz	-100 V 100 V	Offset: 0 Scale: 1 Unit: V	
			AI 1/4 AI 1/5 Sin	TRION-1620-ACC-6-8		-100	AVG	Voltage	20000 Hz	-100 V 100 V	Offset: 0 Scale: 1 Unit: V	
			AL 1/6 Sin	TRION-1620-ACC-6-B		9,999999	AVG	Voltage	20000 Hz	-100 V 100 V	Offset: 0 Scale: 1 Unit: V	
			AI 1/6	TRION-1620-ACC-6-B	NC V	-100	100	voitage	20000 Hz	-100 V 100 V	Öffset: 0	
			CNT 1/1 5	Sim	*	1.608330e+5	AVG	Funda	20000 U-	0.4.740305- 740305-1000	Scale: 1 Unit:	
			CNT 1/1 Frequence	TRION-1620-ACC-6-B	NC V	1.000000e+6	2147483647	Events	20000 Hz	-2.14746365e746365e*009	Offset: 0 Scale: 1 Uz	
			CNT 1/1_Sub	TRION-1620-ACC-6-B	NC NC	1.130859e+5	AVG	Patation	20000 Hz	0.001 Hz 80000000 Hz	Offset: 0 Scale: 1 Unit: °	
			CNT 1/1_Disp	acement TRION-1620-ACC-6-B		0 1.171875et5	AVG	Rotation	10000 Hz	0 * 360 *	Offset: 0 Scale: 1 Um	
			CNT 1/1_Velor	ity TRION-1620-ACC-6-B	NC Strain	-100000	200000	Velocity	10000 Hz	-100000 rpm 100000 rpm	Offset: 0	
		TRION-1850-M	AULII-4-D			-0.00000	avgl				Scale: 1 Unit: V	
			AI 2/1 Sin	TRION-1850-MULTI-4	HD 0	0.040644	10	Voltage	10000 Hz	-10 V 10 V	Offset: 0	
			AI 2/2 SIN	TRION-1850-MULTI-4	HD (1)	-10 5 9999999		Voltage	10000 Hz	-10 V 10 V	Offset: 0	
			AI 2/3 311		. 🔲 🔅	0.000000		Voltage	10000 Hz	-10 V 10 V	Officet 0	
	+	- 3	à:				Z	ero				$\equiv$

Figure 13-1: Channel list with multiple selected channels

Then open the "Add Channel" dialog by pressing the plus button.

🛆 *last.dms - Oxygen			- 🗆 ×
LocalNode	DEWE2.A4 11 12 Add Channel - Psophometer		
	Calculations Formula Statistics Filters Filters FT Rosette Psophometer Power Power Power Coup Data Sources Ethernet Receiver	Perform psophometric measurements according to ITU-T Recommendation 0.41 with various weighting modes.	Scaling + poundy Scale 1 Unit V Scale 1 Unit V
	Alaga Tabol-3 Alaga Ja Sim	Ro HU/07-40 Cancel Add	State 3 State
+	- 2	Zero	

A dialog is shown and Psophometer frequency weighting settings (see 13.4) are made. The newly created Psophometer calculation group can be named individually.

Figure 13-2: Add Channel dialog showing Psophometer options

Finally, press Add to create the new calculation group.

🛆 *la:	st.dms - Oxygen									– 🗆 ×
<b>‡</b>	LocalNode	DEWE2-A4	4							
			n 🧿	000	000	) 🔘 🔘 📲				
0			~ •[	CH 1 CH	2 CH S	CH 4				
E.			- 0	<ul> <li>CH 2</li> <li< td=""><td><ul> <li>CH4</li> <li>CH4</li> <li>CH4</li> <li>CH4</li> </ul></td><td></td><td></td><td></td><td></td><td></td></li<></ul>	<ul> <li>CH4</li> <li>CH4</li> <li>CH4</li> <li>CH4</li> </ul>					
4	All 🔬 Sea	arch , 🍞		~			<b>«</b>			<b>&gt;&gt;</b>
	< > !>	Active   Stored	cı	hannel i	Color   Setup	Scaled Value	Mode	i Sample Rate	Range	Scaling   +
		LocalNode								g
		Psophometers 1	1							dvan
æ			Al 1/1 Sim_ps Al 1/1 Sim Psophome	eter ITU-T 0.41	<b></b>	5.050100 A	100 ITU-T 0.41	20000 Hz	0 V 100 V	Scale: 1 Unit: V Offset: 0
			Al 1/2 Sim_ps Al 1/2 Sim Psophome	eter ITU-T 0.41	۵	37.314685 /	1VG ITU-T 0.41	20000 Hz	0 V 100 V	Scale: 1 Unit: V Offset: 0
			Al 1/3 Sim_ps Al 1/3 Sim Psophome	eter ITU-T 0.41	۵	0.000200 Å	1VG ITU-T 0.41	20000 Hz	0 V 100 V	Scale: 1 Unit: V Offset: 0
i			Al 1/4 Sim_ps Al 1/4 Sim Psophome	eter ITU-T 0.41	۰	0.000062 /	1VG ITU-T 0.41	20000 Hz	0 V 100 V	Scale: 1 Unit: V Offset: 0
		DEWE2-A4								
		TRION-1620-AC	C-6-BNC							
			Al 1/1 Sim	TRION-1620-ACC-6-BNC	۵	0.000000 /	VG Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
			Al 1/2 Sim	TRION-1620-ACC-6-BNC	۲	-0.000000 A	VG Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
			Al 1/3 Sim	TRION-1620-ACC-6-BNC	۰	59.999993 A	VG Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
			Al 1/4 Sim	TRION-1620-ACC-6-BNC	۲	-43.999995 A	VG Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
			Al 1/5 Sim	TRION-1620-ACC-6-BNC	۰	-35.999996 /	VG Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
			Al 1/6 Sim	TRION-1620-ACC-6-BNC	۰	-9.999999 /	VG Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
		CNT 1/1 Sim			٢					
			CNT 1/1 Sim	TRION-1620-ACC-6-BNC	۰	5.591663e+5 A	VG Events	20000 Hz	-2.14748365e748365e+009	Scale: 1 Unit: Offset: 0
			Frequency_C	NT 1/1 Sim TRION-1620-ACC-6-BNC	۰	1.000000e+6 /	WG Frequency	20000 Hz	0.001 Hz 80000000 Hz	Scale: 1 Uz Offset: 0
			Angle_CNT 1/	1 Sim	•	3.931641e+5	VG Rotation	10000 Hz	0 ° 360 °	Scale: 1 Unit: *
	+	- 3	E				Zero			

Figure 13-3: Channel list showing new Psophometer calculation group

The channel details view is used to modify each channel's settings individually and for detailed preview.

🛆 *la:	st.dms - Oxygen			- 🗆 X
\$	LocalNode	DEWE2.44		
0			CH 9 CH 4	
E.				
۶	All 🔬 Sea	rch , 🍾 哇	Al 1/1 Sim Psophometer Al 1/1 Sim psopMS	
	< > [×	Active i  Stored   Channel i  Color		
	⊻	LocalNode	PSOPHOMETER OPTIONS	SCALING
		Psophometers 1	Reference channel: Al 1/1 Sim	Scaling 2-point
æ		Al 1/1 Sim_psoRMS Al 1/1 Sim Psophometer ITU-T 0.41	Mode: ITU-T 0.41	Scaling Sensitivity
		Al 1/2 Sim_psoRMS Al 1/2 Sim Psophometer ITU-T 0.41		
		Al 1/3 Sim_psoRMS Al 1/3 Sim Psophometer ITU-T 0.41		Unit
(i)		Al 1/4 Sim_psokmS Al 1/4 Sim Psophometer ITU-T 0.41		Scaling 1 V/V
		DEWE2-A4		Offset 0 V Zero
		TRION-1620-ACC-6-BNC		
		Al 1/1 Sim	PREVIEW	
		Al 1/2 Sim	81	5.050 V MAX
		AI 1/3 TRION-1620-ACC-6-BNC	-	5.050 V
		A 1/4 TRION-1620-ACC-6-BNC		AC RMS 0.000 V
		A 1/5 TRION-1620-ACC-6-BNC		AVG
		AI 1/6 TRION-1620-ACC-6-BNC	Σ	5.050 V
		CNT 1/1 Sim		5.050 V
		Frequency_CNT 1/1 Sim		
		CNT 1/1_SUB TRION-1820-ACC-8-BNC	-10+	-0.02x 5.050 V
		CNT 1/1_Displacement TRION-1820-ACC-8-BNC Speed_CNT 1/1 Sim	01	
		CNT 1/1_Velocity TRION-1620-ACC-6-BNC		

Figure 13-4: Channel details setup of calculation channel

Psophometer calculations are then available as math channels.



Figure 13-5: Sidebar channel list showing the calculated Psophometer channels

## **13.4** CALCULATION

The calculation is based on FFT.

Depending on the input sampling rate, the FFT block size is chosen to be 2^N samples while the time window stays between 75 and 125 ms, to ensure passing the detector circuitry tests (see 13.6.1 p.5)

Sampling rate	FFT block size
20 kHz	2048
50 kHz	4096
100 kHz	8192
200 kHz	16384

Table 13-1: Sampling rate and FFT block size

## **13.5** WEIGHTING OPTIONS

Different weighting options are available:

## 13.5.1 ITU-T 0.41

Frequency (Hz)	Relative weight (dB)	Tolerance (± dB)
16.66	-85.0	-
50	-63.0	2
100	-41.0	2
200	-21.0	2
300	-10.6	1
400	-6.3	1
500	-3.6	1
600	-2.0	1
700	-0.9	1
800	0.0	0,0 (reference)
900	+0.6	1
1000	+1.0	1
1200	0.0	1
1400	-0.9	1
1600	-1.7	1
1800	-2.4	1
2000	-3.0	1
2500	-4.2	1
3000	-5.6	1
3500	-8.5	2
4000	-15.0	3
4500	-25.0	3
5000	-36.0	3
6000	-43.0	-

Table 13-2: Telephone circuit Psophometer weighting coefficients and limits

### 13.5.2 C-MESSAGE

Frequency (Hz)	Relative weight (dB)	Tolerance (± dB)			
60	-55.7	2			
100	-42.5	2			
200	-25.1	2			
300	-16.3	2			
400	-11.2	1			
500	- 7.7	1			
600	- 5.0	1			
700	- 2.8	1			
800	- 1.3	1			
900	- 0.3	1			
1000	0.0	0.0 (reference)			
1200	- 0.4	1			
1300	- 0.7	1			
1500	- 1.2	1			
1800	- 1.3	1			
2000	- 1.1	1			
2500	- 1.1	1			
2800	- 2.0	1			
3000	- 3.0	1			
3300	- 5.1	2			
3500	- 7.1	2			
4000	-14.6	3			
4500	-22.3	3			
5000	-28.7	3			
NOTE – The attenuation shall continue to increase above 5000 Hz at a rate					

of not less than 12 dB per octave until it reaches a value of -60 dB.

Table 13-3: C-message weighting coefficients and accuracy limits

### 13.5.3 FLAT

Frequency (Hz)		Attenuation	
< 300	Increasing	24 dB/octave (Note 1)	
300	Approximately	3 dB (Note 2)	
400-1020	≤±0	.25 dB	
1020		0 dB	
1020-2600	≤±0.25 dB		
3400	Approximately	3 dB (Note 2)	
> 3400	Increasing	24 dB/octave (Note 1)	
NOTES			
1 Below 300 Hz and above 340 24 dB/octave up to an attenuation of a	0 Hz the attenuation t least 50 dB.	n shall increase at a slope not less than	
2 The exact cut-off frequency sl $3.1 \text{ kHz} \pm 155 \text{ Hz}.$	nall be chosen to ac	chieve an equivalent noise bandwidth of	

Table 13-4: Characteristics of the optional flat filter with an equivalent noise bandwidth of 3.1 kHz (bandwidth of a telephone channel)

### 13.5.4 UNWEIGHTED



Figure 13-6: Frequency response characteristics for unweighted measurements

13.5.5 COMPARISON BETWEEN PSOPHOMETRIC AND C-MESSAGE WEIGHTING



Figure 13-7: Comparison between psophometric and C-message weighting

## **13.6** LINKS

### 13.6.1 ITU-T RECOMMENDATION 0.41 (10/94)

https://www.itu.int/rec/T-REC-O.41-199410-I/en

## 14 CAN-FD DAQ SUPPORT IN OXYGEN

## Please note that CAN-FD data acquisition is an optional feature and requires a separate license for OXYGEN!

CAN-FD data streams can be acquired with OXYGEN if and only if the following hardware is used in combination with OXYGEN:

- Vector VN1610 (2 CAN-FD interfaces)
- Vector VN1640 (4 CAN-FD interfaces)
- Vector VN5610 (2 CAN-FD interfaces)

The CAN-FD hardware must be connected via USB to the measurement system where OXYGEN is running on.

Besides CAN-FD data acquisition, the above mentioned hardware can also be used to acquired conventional CAN-Data streams (up to 1 MBaud).

In addition, it can also be used to transmit data over CAN. Please note that this is an additional optional feature and requires a separate license. For details, please refer to section 5.7.3.

To use one the above mentioned CAN-FD interfaces, proceed the following steps:

- Rune the latest Vector_Diver_Setup which is available on the Vector homepage and delivered together with the Vector hardware
- Select the drivers of the hardware device that shall be used and run the installation procedure (see Figure 14-1)

Driver Selection		VECTOR	>
he setup will install or uninstall the selected	1 devices.		
Device	Installed driver	Driver in installation packet	^
CAN/LIN Interface Family			
VN1530 / VN1531	- not installed -	10.9.14	
VN1610 / VN1611 / VN1630 / VN1640	10.9.12	10.9.12	
VN1630 log	- not installed -	10.4.16	
FlexRay Interface Family			
VN3300	- not installed -	8.2.26	
VN3600	- not installed -	8.2.26	
VN7570	- not installed -	10.3.18	
VN7572	- not installed -	11.0.12	
VN7600	- not installed -	9.9.26	
VN7610	- not installed -	10.6.14	
VN7640	- not installed -	10.8.20	
Vector Tool Platform			
Vector Platform Manager	- not installed -	2.1.24	
VN8900 Interface Family	- not installed -	10.2.136	
VN8800 Interface Family	- not installed -	9.3.18	
Ethernet Interface Family			
VN5610 / VN5610A	- not installed -	9.8.64	
VN5640	- not installed -	10.7.14	
MOST Interface Family			
VN2600 / VN2610	- not installed -	8.8.22	
VN2640	- not installed -	8.4.36	
XL Interface Family			
CANcardXI	- not installed -	8.7.16	
CANcardXLe	- not installed -	7.9.30	
-			~
Select/deselect all devices			
Remove all driver components			

Figure 14-1: Vector driver selection

- After the installation is finished, connect the Vector device to the measurement system if not already happened
- Open OXYGEN and go to System Settings → DAQ Hardware and make sure that VECTOR Hardware is enabled (see ) Note: If VECTOR is written in red (see Figure 14-3), your currently installed OXYGEN license does support Vector CAN-FD hardware. Please contact support@dewetron.com for help.

_			
\$	System Settings	DAQ I	Hardware
:=	Measurement Setup		
	Header Data		ADMA
0	Advanced Setup		CAMERA
	Hardware		DAQP
F	Sync Setup		EPAD
	DAQ Hardware		GIGECAMERA
	Extensions and Plugins		ORIONDAQ
-	Remote Control		ORIONDSA
	User Interface		OXTS
	UI Options	$\square$	SIM
(i)	Localization		TRION
	System Actions		VECTOR
	Shutdown		



VECTOR	
--------	--

Figure 14-3: Missing Vector CAN-FD hardware license

- Changing the settings in this menu, requires an OXYGEN restart
- Open the OXYGEN Channel List. The Vector Hardware channels will be visible in the section *VNxxxx* of the Channel List (marked red in Figure 14-4).

٩	La	ocalN	ode	USB-Cameras								
=				OXTS Enclosure								
0												
$\leq$				VN1610								
1												
۶	All		ر Sea	rch							«	_ ^
	×	<	>	Channe	a i	Color	Setup	Active i	Stored	Scaled Value		Mode
÷.			LocalN	ode								
		Þ	Form	ula								
		Þ	DEWE	E2-A4								
		Þ	ADMA	Enclosure								
		Þ	USB-	Cameras								
		Þ	охтя	Enclosure								
Ľ		ľ	VN16	10								
]			VN:	1610								
			C	AN 1	VN1610 Channel 1		۲					FD
			C	AN 2 AN 2	VN1610 Channel 2		۲					FD

Figure 14-4: Channel List with Vector VN hardware included

Click on the Gear button to open the Channel settings (marked blue in Figure 14-4). The Baud rate and additional settings can be changed here and the dbc file can be loaded (see Figure 14-5).



After loading the dbc-file, an arrow positioned left to the Channel name will appear. A click on the Arrow will expand the CAN-FD channel list and show the individual CAN-FD messages included their CAN channels (see Figure 14-6).



Figure 14-6: CAN-FD channel list in OXYGEN

• For more details about CAN-channels in OXGYEN, please refer to section 5.7.

**Remark:** If the connection between the Vector hardware device and the measurement system should fail during the operation (i.e. the USB cable is unplugged), OXYGEN must be restarted after solving the connection problem to enable the CAN-FD data acquisition again!

# **15 LIST OF FIGURES**

Figure 1-1: Starting the installation wizard	9
Figure 1-2: Select Destination Location	9
Figure 1-3: Select OXYGEN Edition	. 10
Figure 1-4: Select Start Menu Folder	. 10
Figure 1-5: Ready to Install	. 10
Figure 1-6: Installing	. 11
Figure 1-7: Installation completed	. 11
Figure 1-8: Updating the OXYGEN-license	. 12
Figure 1-9: System Information menu	. 12
Figure 2-1: Software Overview	.13
Figure 2-2: Saving a Setup file	. 15
Figure 2-3: Loading a Setup file	. 16
Figure 2-4: Hardware Mismatch dialog	. 17
Figure 2-5: Opening a Data file	. 17
Figure 2-6: Loaded data file - Overview	. 18
Figure 2-7: Overview bar	. 19
Figure 2-8: Change displayed channel in the Overview bar	. 19
Figure 2-9: Sidebar position reset	. 19
Figure 2-10: Enabling the TRION Series in the DAQ Hardware setup	. 20
Figure 2-11: Overview of connected TRION [™] hardware in the Channel List	.21
Figure 2-12: Network Interface settings	.21
Figure 2-13: IP addresses of connected TRIONet [™] s	. 22
Figure 2-14: Connection of EPAD-modules	.22
Figure 2-15: Enabling the EPAD Series in the DAQ Hardware setup	.23
Figure 2-16: Selection of the proper COM port	.23
Figure 2-17: Scan for modules button	.23
Figure 2-18: EPAD found message	.23
Figure 2-19: Program module addresses button	.23
Figure 2-20: EPAD-programming procedure	.24
Figure 2-21: Front of an EPAD2-module	24
Figure 2-22: COM port section in the Device Manager	24
Figure 2-23: FPAD-Channel List	25
Figure 2-24: Displaying FPAD2-data	26
Figure 2-25: Enabling the ORION DAO/DSA Series in the DAO Hardware setun	27
Figure 2-26: Enabling DAOP and TRION TM hardware in the DAO Hardware setup	27
Figure 2-20: Endoming bride and record and analysis in the bride national setup	28
Figure 2-28: Module programming III	20
Figure 2-20: Module programming the module addresses	, 20 28
Figure 2-30: Finish the module programming	20
Figure 2-30: MADP/HSI modules in the Channel List connected via $TRION^{TM}$ -1802-dLV	20
Figure $A_1$ : System Settings – Overview	30
Figure 4-1. System Settings Measurement Setup - Overview	30
Figure 4-2. System Settings Weasurement Setup – Overview	. 30
Figure 4-3. Ellabled Ask for filename before recording start button	. J I
Figure 4-4. Fopup window to enter the menanic perore recording start	רכ. רכ
Figure 4-5. Wulu-IIIE IIIEIIU	. שב. ככ
Figure 4-0. Special case 1 for Multi-File Recording: Split duration: 10s	. 5Z
Figure 4-7. Special Case 2 for Multi-File Recording; Split duration: 105	, 33 22
Figure 4-8: Special Case 3 for Multi-File Recording; Split after 2 Recording Events	. 33

Figure 4-9: Split Start and Split Stop Marker	.34
Figure 4-10: Open Data File button	.34
Figure 4-11: Opening a Multi-File	.34
Figure 4-12: Opening all parts of a Multi-File Recording	.35
Figure 4-13: Opening several parts of a Multi-File Recording	.35
Figure 4-14: Opening one part of a Multi-File Recording	.35
Figure 4-15: Selection of non-compatible Multi-File parts	.36
Figure 4-16: System Settings Header Data – Overview	.36
Figure 4-17: Header Data UI at the recording start	.36
Figure 4-18: Header Data information when loading a data file	.37
Figure 4-19: Adding Header Data via drag and drop from the System Settings to the measurem	ent
screen	.37
Figure 4-20: Adding Header Data via drag and drop from the Text Box Instrument Properties to	the
measurement screen	.37
Figure 4-21: Adding the Header Description in a Text Box	.37
Figure 4-22: System Settings Advanced Setup – Overview	.38
Figure 4-23: Error message System time synchronization not allowed	. 38
Figure 4-24: Sync Setup - Internal Sync Clock selected	. 39
Figure 4-25: SYNC I/O connectors of a DEWE2/3 system	. 39
Figure 4-26: Sync Setup – TRION-SYNC-BUS selected	. 39
Figure 4-27: Selecting an external synchronization source using a TRION [™] -BASE board	.41
Figure 4-28: Providing a LVTTL signal via the AUX connector of the TRION [™] -BASE board	.41
Figure 4-29: Sync Settings for an IRIG synchronization	.42
Figure 4-30: Sync Settings for a PPS synchronization	.42
Figure 4-31: Sync Settings for a GPS synchronization	.43
Figure 4-32: Sync Settings for a PTP synchronization	.43
Figure 4-33: IRIG-B-DC OUT settings	.44
Figure 4-34: Providing a LVTTL signal via the AUX connector of the TRION [™] - TIMING/VGPS board	.44
Figure 4-35: PPS signal provided by an ADMA (blue) and an RT (red)	.44
Figure 4-36: IRIG connector; Detailed view	.44
- Figure 4-37: System Settings DAQ Hardware – Overview	.45
Figure 4-38: System Settings Sensors – Overview	.46
Figure 4-39: Sensor database – popup window to change channel scaling	47
Figure 4-40: Sensor database – open advanced menu	47
Figure 4-41: Applying a sensor to a channel in the channel settings	. 48
Figure 4-42: Popup window to apply a sensor for a channel in the channel settings	.48
Figure 4-43: Name of chosen sensor for the channel seen in the channel list and channel settings	. 48
Figure 4-44: <i>Remote Control</i> – SCPI over Ethernet menu	. 49
Figure 4-45: Remote Control – XCP over Ethernet menu	. 49
Figure 4-46: Configuration for XCP over Ethernet	. 50
Figure 4-47: <i>Remote Control</i> indicator	. 50
Figure 4-48: Data Stream Plugin – Overview	.51
Figure 4-49: System Settings <i>UI Options</i> – Overview	. 52
Figure 4-50: System Settings <i>Localization</i> – Overview	. 53
Figure 4-51: System Settings <i>Shutdown</i> – Overview	.53
Figure 5-1: Data Channels Menu - Quick view	.54
Figure 5-2: Complete Data Channels menu	.54
Figure 5-3: Popup window for changing the channel color	
Figure 5-4: Popup window for changing the input mode	56
Figure 5-5: Popup window for changing the sample rate	56
Figure 5-6: Popup window for changing the input range	57

Figure 5-7: Popup window for changing the scaling and physical unit	.57
Figure 5-8: Zeroing an input channel	.57
Figure 5-9: Popup window for changing the sensitivity	.57
Figure 5-10: Popup window for changing the 2-point-scaling	.58
Figure 5-11: Popup window for applying table scaling	.58
Figure 5-12: Popup window for changing the LP-filter	.58
Figure 5-13: Popup window for changing the coupling mode	.58
Figure 5-14: Popup window for changing the bit rate	.59
Figure 5-15: Table scaling – add point to specify x- and y-value	.59
Figure 5-16: Table scaling – delete point.	.59
Figure 5-17: Table scaling – copy and paste table from Excel into OXYGEN	.60
Figure 5-18: Channel Setup of a TRION [™] -1620-ACC channel	.61
Figure 5-19: Creation of a math channel	.62
Figure 5-20: Popup window for creating a Formula channel	. 62
Figure 5-21: Formula Channel Setup – Överview	.63
Figure 5-22: ECNT-function with <i>Cond</i> ition only	.68
Figure 5-23: ECNT-function with <i>Condition</i> and <i>Rearm</i>	68
Figure 5-24: ECNT-function with Condition Rearm and Reset	69
Figure 5-25: HOI D-function with Condition	69
Figure 5-26: HOLD function with Condition and Initial value	70
Figure 5-27: HOLD function with Condition Initial value and Rearm level	70
Figure 5-27: NOLD-Infection with condition, million value and Acum revelucion	.70
Figure 5-20: Stopwatch with start and stop condition	.71
Figure 5-20: Stopwatch with start and stop condition no reset	. / ⊥ 72
Figure 5-50. Stopwatch with start and stop condition, no reset and stop condition.	.72 72
Figure 3-51. Stopwatch with start and stop condition, reset specified	. / Z
Figure 5-37 Measolitt tunction	
Figure 5-32: Measdiff function	.75 7/
Figure 5-32: Measdiff function Figure 5-33: Period function	.75 .74 .74
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination	.75 .74 .74 .75
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function	.73 .74 .74 .75
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function	.73 .74 .74 .75 .75
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function	.73 .74 .74 .75 .75 .76
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function	.73 .74 .74 .75 .75 .76 .77
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel.	.73 .74 .74 .75 .75 .75 .76 .77 .78
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel Figure 5-40: Statistics Channel Setup- Overview	.73 .74 .75 .75 .76 .77 .78 .79
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel Figure 5-40: Statistics Channel Setup- Overview Figure 5-41: Sine wave with amplitude 1, no DC component	.73 .74 .75 .75 .75 .76 .77 .78 .79 .80
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel Figure 5-40: Statistics Channel Setup- Overview Figure 5-41: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component	.73 .74 .75 .75 .76 .77 .78 .79 .80 .81
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel Figure 5-40: Statistics Channel Setup- Overview Figure 5-41: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component Figure 5-43: Popup window for creating a (Low or High pass) Filter channel	.73 .74 .75 .75 .76 .77 .78 .79 .80 .81 .81
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel. Figure 5-40: Statistics Channel Setup- Overview Figure 5-41: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component Figure 5-43: Popup window for creating a Low or High pass) Filter channel Figure 5-44: Popup window for creating a Differentiator channel	.73 .74 .75 .75 .75 .76 .77 .78 .79 .80 .81 .81 .82
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel Figure 5-40: Statistics Channel Setup- Overview Figure 5-41: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component Figure 5-43: Popup window for creating a Low or High pass) Filter channel Figure 5-44: Popup window for creating an Integrator channel Figure 5-45: Popup window for creating an Integrator channel	.73 .74 .75 .75 .75 .76 .77 .78 .79 .80 .81 .81 .81 .82 .82
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel Figure 5-40: Statistics Channel Setup- Overview Figure 5-41: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component Figure 5-43: Popup window for creating a Low or High pass) Filter channel Figure 5-44: Popup window for creating an Integrator channel Figure 5-45: Popup window for creating an Integrator channel Figure 5-46: Filters Channel Setup- Overview	.73 .74 .75 .75 .75 .76 .77 .78 .79 .80 .81 .81 .81 .82 .82 .83
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel. Figure 5-40: Statistics Channel Setup- Overview Figure 5-41: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component Figure 5-43: Popup window for creating a (Low or High pass) Filter channel Figure 5-44: Popup window for creating a Differentiator channel Figure 5-45: Popup window for creating an Integrator channel Figure 5-46: Filters Channel Setup- Overview	.73 .74 .74 .75 .75 .75 .76 .77 .78 .79 .80 .81 .81 .82 .82 .82 .83
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-36: Combination of edge and stopwatch function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel Figure 5-40: Statistics Channel Setup- Overview Figure 5-41: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component Figure 5-43: Popup window for creating a Differentiator channel Figure 5-44: Popup window for creating an Integrator channel Figure 5-45: Popup window for creating an Integrator channel Figure 5-46: Filters Channel Setup- Overview Figure 5-47: Popup window for creating an FFT channel Figure 5-48: FFT channels within the Channel List	.73 .74 .74 .75 .75 .76 .77 .78 .77 .80 .81 .81 .82 .82 .83 .84 .85
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-36: Combination of edge and stopwatch function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel. Figure 5-40: Statistics Channel Setup- Overview Figure 5-41: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component Figure 5-43: Popup window for creating a Differentiator channel Figure 5-44: Popup window for creating an Integrator channel Figure 5-45: Popup window for creating an Integrator channel Figure 5-46: Filters Channel Setup- Overview Figure 5-47: Popup window for creating an FFT channel Figure 5-48: FFT channels within the Channel List Figure 5-48: FFT channels within the Channel List	.73 .74 .75 .75 .75 .76 .77 .78 .77 .80 .81 .82 .81 .82 .83 .84 .85 .86
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel Figure 5-40: Statistics Channel Setup- Overview Figure 5-40: Statistics Channel Setup- Overview Figure 5-42: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component Figure 5-43: Popup window for creating a Differentiator channel Figure 5-44: Popup window for creating an Integrator channel Figure 5-45: Popup window for creating an Integrator channel Figure 5-46: Filters Channel Setup- Overview Figure 5-47: Popup window for creating an FFT channel Figure 5-48: FFT channel swithin the Channel List Figure 5-49: Complex FFT channel Setup- Overview	.73 .74 .75 .75 .75 .76 .77 .78 .79 .80 .81 .81 .82 .83 .84 .82 .83 .84 .85 .86
Figure 5-32: Measdiff function. Figure 5-33: Period function. Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel. Figure 5-40: Statistics Channel Setup- Overview Figure 5-42: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component Figure 5-43: Popup window for creating a Differentiator channel Figure 5-44: Popup window for creating an Integrator channel Figure 5-45: Popup window for creating an Integrator channel Figure 5-46: Filters Channel Setup- Overview Figure 5-47: Popup window for creating an Integrator channel Figure 5-48: FFT channel Setup- Overview Figure 5-49: Complex FFT channel Setup- Overview Figure 5-49: Complex FFT channel Setup- Overview Figure 5-49: Complex FFT channel Setup- Overview Figure 5-50: Amplitude FFT channel Setup- Overview Figure 5-51: Phase FFT channel Setup- Overview	.73 .74 .74 .75 .75 .76 .77 .78 .77 .80 .81 .81 .82 .82 .83 .84 .85 .86 .87 .88
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel Figure 5-40: Statistics Channel Setup- Overview Figure 5-41: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component Figure 5-43: Popup window for creating a Differentiator channel Figure 5-44: Popup window for creating an Integrator channel Figure 5-45: Popup window for creating an Integrator channel Figure 5-46: Filters Channel Setup- Overview Figure 5-47: Popup window for creating an FFT channel Figure 5-48: FFT channel Setup- Overview Figure 5-49: Complex FFT channel Setup- Overview Figure 5-49: Complex FFT channel Setup- Overview Figure 5-50: Amplitude FFT channel Setup- Overview Figure 5-51: Phase FFT channel Setup- Overview Figure 5-52: Popup window for creating a Rosette calculation	.73 .74 .74 .75 .75 .76 .77 .78 .77 .78 .80 .81 .81 .82 .83 .84 .85 .86 .87 .88
<ul> <li>Figure 5-32: Measdiff function</li></ul>	.73 .74 .74 .75 .75 .76 .77 .78 .77 .78 .80 .81 .82 .83 .84 .83 .84 .85 .86 .87 .88 .88
<ul> <li>Figure 5-32: Measairf function</li> <li>Figure 5-33: Period function</li> <li>Figure 5-34: Noise disturbing the correct functionality of the period determination</li> <li>Figure 5-35: Dutycycle function</li> <li>Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination</li> <li>Figure 5-37: Edge function</li> <li>Figure 5-38: Combination of edge and stopwatch function</li> <li>Figure 5-39: Popup window for creating a Statistics channel</li> <li>Figure 5-40: Statistics Channel Setup- Overview</li> <li>Figure 5-41: Sine wave with amplitude 1, no DC component</li> <li>Figure 5-42: Sine wave with amplitude 1, 0.5 DC component</li> <li>Figure 5-43: Popup window for creating a (Low or High pass) Filter channel</li> <li>Figure 5-44: Popup window for creating a Integrator channel</li> <li>Figure 5-45: Popup window for creating an Integrator channel</li> <li>Figure 5-47: Popup window for creating an FFT channel</li> <li>Figure 5-48: FFT channel Setup- Overview</li> <li>Figure 5-50: Amplitude FFT channel Setup- Overview</li> <li>Figure 5-51: Phase FFT channel Setup- Overview</li> <li>Figure 5-52: Popup window for creating a Rosette calculation</li> <li>Figure 5-54: Error message in case of wrong engineering unit</li> </ul>	.73 .74 .74 .75 .75 .76 .77 .78 .77 .78 .79 .80 .81 .81 .82 .81 .82 .83 .84 .82 .83 .84 .85 .86 .87 .88 .88 .88 .89 .90
Figure 5-32: Measairf function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-35: Dutycycle function Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel. Figure 5-40: Statistics Channel Setup- Overview Figure 5-41: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component Figure 5-43: Popup window for creating a Lifferentiator channel. Figure 5-43: Popup window for creating a Differentiator channel. Figure 5-44: Popup window for creating an Integrator channel Figure 5-45: Popup window for creating an FFT channel Figure 5-46: Filters Channel Setup- Overview Figure 5-47: Popup window for creating an FFT channel Figure 5-48: FFT channels within the Channel List Figure 5-50: Amplitude FFT channel Setup- Overview Figure 5-51: Phase FFT channel Setup- Overview Figure 5-52: Popup window for creating a Rosette calculation Figure 5-52: Popup window for creating a Rosette calculation Figure 5-54: Error message in case of wrong engineering unit Figure 5-55: Channel assignment in the rosette channel setup	.73 .74 .74 .75 .75 .76 .77 .78 .77 .78 .80 .81 .81 .82 .83 .84 .85 .84 .85 .88 .88 .88 .88 .88 .89 .90
Figure 5-32: Measdiff function Figure 5-33: Period function Figure 5-34: Noise disturbing the correct functionality of the period determination Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-36: Noise disturbing the correct functionality of the dutycycle determination Figure 5-37: Edge function Figure 5-38: Combination of edge and stopwatch function Figure 5-39: Popup window for creating a Statistics channel. Figure 5-40: Statistics Channel Setup- Overview Figure 5-41: Sine wave with amplitude 1, no DC component Figure 5-42: Sine wave with amplitude 1, 0.5 DC component Figure 5-43: Popup window for creating a Low or High pass) Filter channel Figure 5-44: Popup window for creating a Differentiator channel Figure 5-45: Popup window for creating an Integrator channel Figure 5-46: Filters Channel Setup- Overview Figure 5-46: Filters Channel Setup- Overview Figure 5-46: Filters Channel Setup- Overview Figure 5-47: Popup window for creating an FFT channel Figure 5-49: Complex FFT channel Setup- Overview Figure 5-50: Amplitude FFT channel Setup- Overview Figure 5-51: Phase FFT channel Setup- Overview Figure 5-52: Popup window for creating a Rosette calculation Figure 5-51: Phase FFT channel Setup- Overview Figure 5-52: Popup window for creating a Rosette calculation Figure 5-53: Rosette channel setup - Overview Figure 5-54: Error message in case of wrong engineering unit Figure 5-55: Channel assignment in the rosette channel assignment Figure 5-56: Error message in case of missing channel assignment	.73 .74 .74 .75 .75 .76 .77 .78 .80 .81 .82 .83 .81 .82 .83 .84 .85 .88 .88 .88 .88 .88 .88 .88 .88 .89 .90 .91

Figure 5-58: Mohr's circle	91
Figure 5-59: Sketch of different rosette types: left: 90° (T), Middle: 45°, Right: 120° rosette	92
Figure 5-60: Strain-Stress-Curve	93
Figure 5-61: Exemplary testbed to use the Swept Sine Analysis plugin	95
Figure 5-62: Steps to configure a Swept Sine Analysis	95
Figure 5-63: Swept Sine Analysis setup – Overview	96
Figure 5-64: Recognition of offline created channels	98
Figure 5-65: <i>Store data</i> button	98
Figure 5-66: Save setup file button	98
Figure 5-67: Progress indicator for Offline Math calculations	98
Figure 5-68: Deviation of Offline and Online statistics channels in case of Event based wavef	orm
recording	. 99
Figure 5-69: Deviation of Offline and Online Filter channels in case of Event based waveform record	ding
	99
Figure 5-70: Populo window for creating a Power Group	100
Figure 5-71: Popup window for acquiring an Ethernet Receiver Data stream	101
Figure 5-71: Fopup window for acquiring an Ethernet Accelver Data stream	101
Figure 5-72. Event counting	102
Figure 5-75 Accuracy at period time measurement	102
Figure 5-74 Frequency Medsurement	104
Figure 5-75: Quadrature Encoder X1 Mode	104
Figure 5-76: Quadrature Encoder X2 Mode	104
Figure 5-77: Quadrature Encoder X4 Mode	105
Figure 5-78: Quadrature Encoder with channel 2	105
Figure 5-79: A-Up/B-Down Encoder	106
Figure 5-80: Channel List of a Counter channel	10/
Figure 5-81: Block diagram of one Counter channel on a TRION™-CNT module	10/
Figure 5-82: Channel List of a Counter channel	108
Figure 5-83: Channel Setup for a TRION [™] -CNT channel in <i>Event</i> mode	108
Figure 5-84: Channel Setup for a TRION [™] -CNT channel in <i>Encoder</i> mode	109
Figure 5-85: Digital filter	111
Figure 5-86: Input signal with chatter	111
Figure 5-87: Filter Gate Times	111
Figure 5-88: Channel settings for a Tacho sensor	112
Figure 5-89: Channel settings for a CDM +Trigger sensor	113
Figure 5-90: Channel settings for an Encoder sensor	113
Figure 5-91: Enable CAN-channels	114
Figure 5-92: CAN-Channel Setup – Overview	114
Figure 5-93: CAN channel list	115
Figure 5-94: Timestamp Selection in the CAN channel menu	115
Figure 5-95: CAN data export with 10 MHz timebase. Each CAN data sample is written to a separate	line
· · · ·	116
Figure 5-96: CAN data export with AD Sample Rate timebase. Each CAN datapoint is written to the	line
of the analog data sample which has the closest timestamp	116
Figure 5-97: Timestamp Selection in the CAN channel menu	116
Figure 5-98: Blue: Analog Input: Green: CAN-Output with a delay of 70ms (default value)	117
Figure 5-99: Blue: Analog Input: Green: CAN-Output with a delay of 10ms	117
Figure 5-100: Drag and drop the GPS channel to the measurement screen	120
Figure 5-101: External Shunt resistor selection in the Channel Setun	120
Figure 5-102: Voltage measurement mode	120
Figure 5-103: Entering the shunt resistance as scaling factor	121
Figure 5-101. Selection of several channels	177
Figure 9 10-, Sciection of Several charmers	TTT

Figure 5-105: Filtering by the Active Column	. 123
Figure 5-106: Filtering by the <i>Channel</i> Column	. 123
Figure 5-107: Filtering by the <i>Mode</i> Column	. 123
Figure 6-1: Adding Instruments to the measurement screen	. 124
Figure 6-2: Selection of several Instruments in the Design Mode	. 125
Figure 6-3: Analog Meter - Overview	. 126
Figure 6-4: Analog Meter - Visualization options	. 126
Figure 6-5: Digital Meter – Overview	. 127
Figure 6-6: Recorder - Overview	. 128
Figure 6-7: Two Recorders <i>Locked</i>	. 128
Figure 6-8: Additional features of the Recorder	. 129
Figure 6-9: Changing the X-Axis scaling to the full time with one right click	.130
Figure 6-10: Window to define a customized X-Axis scaling	.130
Figure 6-11: Window to define a customized Y-Axis scaling (Individual Scaling selected)	.131
Figure 6-12: Define a customized Y-Axis scaling for one channel (Individual Scaling not selected)	. 132
Figure 6-13: Define a customized Y-Axis scaling for all channels (Individual Scaling not selected)	.132
Figure 6-14: Activated Cursors - Overview	.133
Figure 6-15: 0.5 Hz sine wave in a Recorder: Cursor A @ 0.1s and cursor B @ 2.0s	.134
Figure 6-16: Zooming on a touch screen	.137
Figure 6-17: Zooming with a mouse	.137
Figure 6-18: Operational Features of Deia View™	.138
Figure 6-19: Chart Recorder - Overview	.139
Figure 6-20: Bar Meter - Overview	. 140
Figure 6-21: Indicator – Overview	. 141
Figure 6-22: The Table - Overview	.142
Figure 6-23: The Image Instrument – Overview	.143
Figure 6-24: The Text Instrument – Overview	.144
Figure 6-25: The Scope – Overview	. 145
Figure 6-26: Trigger on a <i>Rising</i> (left) and on a <i>Falling</i> (right) edge	. 145
Figure 6-27: Rising trigger edge with level 0 (left) and level +0.5 (right)	.146
Figure 6-28: The Spectrum analyzer - Overview	. 147
Figure 6-29: Instrument Properties of the Spectrum Analyzer if Frequency Domain channels	are
assigned	. 148
Figure 6-30: Hanning window in time and frequency domain (N = 128)	. 149
Figure 6-31: Hamming window in time and frequency domain (N = 128)	. 150
Figure 6-32: Rectangular window in time and frequency domain (N = 128)	. 150
Figure 6-33: Blackman window in time and frequency domain (N = 128)	. 151
Figure 6-34: Blackman-Harris window in time and frequency domain (N = 128)	. 151
Figure 6-35: Flat-Top window in time and frequency domain (N = 128)	. 152
Figure 6-36: Bartlett window in time and frequency domain (N = 128)	. 152
Figure 6-37: Recommendation about the usage of different window funtions	. 153
Figure 6-38: Comparison of the window functions in time domain (N=128)	. 153
Figure 6-39: FFT Marker - Overview	.157
Figure 6-40: Signal 1 in time domain. 2s (41samples)	.158
Figure 6-41: Signal 1 in frequency domain, no zero-padding	.159
Figure 6-42: Signal 1 in time domain, zero-padding to 64 samples	.159
Figure 6-43: Signal 1 in frequency domain. zero-padding to 64 samples	.159
Figure 6-44: Signal 1 in time domain, zero-padding to 128 samples	.160
Figure 6-45: Signal 1 in frequency domain, zero-padding to 128 samples	.160
Figure 6-46: Signal 2 in time domain, 6.4s (128 samples)	. 160
Figure 6-47: Signal 2 in frequency domain, no zero-padding	. 161

Figure 6-48: Signal in time domain (first 250ms)	161
Figure 6-49: x(t) in frequency domain	162
Figure 6-50: x(t) in frequency domain divided by the FFT-length	162
Figure 6-51: One-sided spectrum X(f) multiplied by factor 2	163
Figure 6-52: x(t) _{win} in time domain: multiplied with a Hanning window.	163
Figure 6-53: x(t), with the demand of the figure 6-53: x(t), with the figure 6-53: x(t), with the figure 6-54 to the figure 6-5	164
Figure 6-54: $x(t)_{min}$ in frequency domain divided by the EFT-length	164
Figure 6-55: One-sided spectrum $Y(f)$ multiplied by factor 2	167
Figure 6-56: Amplitude-True-normalized spectrum X(f)	165
Figure 6-57: Power True normalized spectrum Y(f)	165
Figure 6-58: Decomposition of the time signal for a Periodogram with an average of 4 spectra and	1 0%
everlapping	1070
Figure 6 EQ: Decomposition of the time signal for a Deriodogram with an average of 4 spectra and	750/
Figure 6-59: Decomposition of the time signal for a Periodogram with an average of 4 spectra and	1070
Eigune C. CO. Decomposition of the time signal for a Derived gram with an everyon of 2 spectra and 1	TPP
Figure 6-60: Decomposition of the time signal for a Periodogram with an average of 2 spectra and 3	50%
overlapping	167
Figure 6-61: Video Instrument – Overview	168
Figure 6-62: Activate cameras and enable recording	168
Figure 6-63: Enabling the Camera Series and the GigE Camera series in the DAQ Hardware setup	169
Figure 6-64: Frame Counter Channel	169
Figure 6-65: The XY-Plot – Overview	170
Figure 6-66: XY-Plot - Data scrolling	171
Figure 6-67: The GPS plot – Overview	172
Figure 6-68: Image positioning dialog	173
Figure 6-69: Positioned image	174
Figure 6-70: Editing the loaded image	174
Figure 6-71: GPS quality Instrument - Overview	175
Figure 6-72: GPS NMEA data channel	175
Figure 6-73: GPS quality instrument - Explanation of the satellites plot	176
Figure 6-74: GPS quality instrument - Extended View selected	176
Figure 6-75: GPS quality instrument - Extended View de-selected	176
Figure 6-76: Spectrogram – Overview	177
Figure 6-77: Power Group – Overview	178
Figure 7-1: Trigger Events Menu – Overview	179
Figure 7-2: Enable Trigger Mode	179
Figure 7-3: Define an Event Condition and Trigger on Level HIGH	180
Figure 7-4: Trigger on <i>Level LOW</i>	180
Figure 7-5: Trigger on <i>Window IN</i>	180
Figure 7-6: Trigger on <i>Window OUT</i>	181
Figure 7-7: Trigger on <i>Keyboard</i> Event	181
Figure 7-8: Trigger on <i>Time</i> Event	181
Figure 7-9: Trigger Menu - Additional information	181
Figure 7-10: Trigger - Recording Actions	182
Figure 7-11: Trigger - Alarm Actions	182
Figure 7-12: Changing the channel mode of a digital channel	183
Figure 7-13: Alarm Counter	183
Figure 7-14: Trigger - Marker Action	183
Figure 7-15. Trigger - Snanshot Action	192
Figure 7-16: Snanshot channel in the Channel List	103 101
Figure 7-10. Shapshut thannels in the Channels in the Spanshot Action many	104 101
Figure 7-17. Sciecting Several channels in the Shapped in the Channel List for each calested abarred	104 104
Figure 7-18: will result in an own snapshot channel in the Channel List for each selected channel	184

Figure 7-19: Action bar with enabled Event Based Waveform Recording	.184
Figure 7-20: Event based waveform Recording selection	. 185
Figure 7-21: Level High Condition Type; Threshold: 1	. 185
Figure 7-22: Start Recording Action Type	. 185
Figure 7-23: Level High Condition Type; Threshold: 2	.186
Figure 7-24: Pause Recording Action Type	. 186
Figure 7-25: Event based waveform Recording selection	.186
Figure 7-26: Window In Condition Type; 12	. 187
Figure 7-27: Record Event Action Type	. 187
Figure 7-28: Event based waveform Recording selection	. 187
Figure 7-29: Recording every 60 minutes for 2 minutes	. 187
Figure 7-30: Record Event Action Type	. 188
Figure 7-31: Continuous waveform Recording selection	.188
Figure 7-32: Space key Condition type	.188
Figure 7-33: Snapshot Action Type	.188
Figure 7-34: Alarm Action Type	. 189
Figure 7-35: Marker Action Type	.189
Figure 7-36: Event Based Waveform Recording (marked in red) and enabled Statistics Recording	.190
Figure 7-37: Triggered Events menu. Automatic measurement start	.190
Figure 8-1: Adding a Marker	192
Figure 8-2: Marker review in the PLAY mode	193
Figure 9-1: Export Settings – Overview and export options for a $*$ csy-file	194
Figure 9-2: Export active recorder region or between cursors	194
Figure 9-3: Export Options for a * txt-file	195
Figure 9-4: Export options for a * mdf4-file	196
Figure 9-5: Export options for a * mat-file	196
Figure 9-6: Export options for an Excel-file	197
Figure 9-7: Export menu Auto-export settings	197
Figure 10-1: The Screens Menu - Overview	199
Figure 10-2: Measurement screens enlarged to the whole screen	200
Figure 10-3: Pushbuttons in the Screens Menu	200
Figure 11-1: The Reporting Tool – Overview	201
Figure 11-2: Display the measurement screen that shall be copied to the report	.202
Figure 11-3: Open the small-view of the Reporting menu	.202
Figure 11-4: Click the Copy button	.203
Figure 11-5: Measurement screen added to the report	.203
Figure 11-6: Copying single instruments from the measurement screen.	.204
Figure 11-7: to the report page	.204
Figure 11-8: Activating the <i>Design Mode</i> on report page	.205
Figure 11-9: Several vellow cursor positions within one report	.205
Figure 11-10: Pushbuttons in the <i>Reporting</i> Menu	.206
Figure 11-11: Expanded <i>Reporting</i> Menu	.206
Figure 12-1: Topology for TRION-SYNC-BUS without TIMING	.208
Figure 12-2: Topology for TRION-SYNC-BUS with TIMING.	.209
Figure 12-3: Topology for TIMING without TRION-SYNC-BUS	.209
Figure 12-4: Topology of TIMING with IRIG OUT	.210
Figure 12-5: OXYGEN Net menu – <i>Nodes</i>	.211
Figure 12-6: Claim a measurement device	.211
Figure 12-7: Release a measurement device	.212
Figure 12-8: Nodes filter	.212
Figure 12-9: OXYGEN Net menu – <i>Sync</i>	.212
· · · · · · · · · · · · · · · · · · ·	

Figure 12-10: OXYGEN Net menu – Settings	213
Figure 12-11: Visibility for other users if OXYGEN Net is enabled and Allow Claim is enabled	214
Figure 12-12: Visibility for other users if OXYGEN Net is enabled and Allow Claim is disabled	214
Figure 12-13: Enable OXYGEN Net	214
Figure 12-14: Allow claiming of slave devices	215
Figure 12-15: Claiming of measurement devices	215
Figure 12-16: List of claimed devices	215
Figure 12-17: Claimed information on the Slave device	216
Figure 12-18: Sync wiring of different OXYGEN Net system variants	216
Figure 12-19: Correct sync wiring	216
Figure 12-20: Sync View with TIMING-Modules. Select node to change settings	217
Figure 12-21: No valid sync setup, with a hint, which node is not configured correctly	218
Figure 12-22: Slave unit channels visible in the Master units' Channel List	218
Figure 12-23: Channel transfer and recording combinations	219
Figure 12-24: Incorrect sync wiring	220
Figure 12-25: Software feedback if sync signal is lost during the measurement	220
Figure 12-26: Software feedback if sync signal is reconnected during the measurement	221
Figure 12-27: Software feedback on master device if slave node loses network connection	221
Figure 12-28: Software feedback on slave device if slave node loses network connection	221
Figure 12-29: Software feedback on master device if slave node loses network connection	222
Figure 12-30: Software feedback on slave device if slave node loses network connection	222
Figure 13-1: Channel list with multiple selected channels	223
Figure 13-2: Add Channel dialog showing Psophometer options	224
Figure 13-3: Channel list showing new Psophometer calculation group	224
Figure 13-4: Channel details setup of calculation channel	225
Figure 13-5: Sidebar channel list showing the calculated Psophometer channels	225
Figure 13-6: Frequency response characteristics for unweighted measurements	228
Figure 13-7: Comparison between psophometric and C-message weighting	228
Figure 14-1: Vector driver selection	229
Figure 14-2: Enabling Vector CAN-FD hardware in OXYGEN	230
Figure 14-3: Missing Vector CAN-FD hardware license	230
Figure 14-4: Channel List with Vector VN hardware included	230
Figure 14-5: CAN-FD channel settings	230
Figure 14-6: CAN-FD channel list in OXYGEN	231

# **16 LIST OF TABLES**

Table 2-1: Software Overview	14
Table 4-1: LED indication of the SYNC OUT and SYNC I/O connector	40
Table 4-2: Compatibility of TRION [™] modules and synchronization source	40
Table 4-3: IRIG-LED indication	45
Table 4-4: Remote Control and Data Transfer - Overview	52
Table 5-1: Push buttons in the Channel Menu – Overview	55
Table 5-2: Pushbuttons in the Formula Channel Setup – Overview	63
Table 5-3: Standard mathematical operators - description and syntax	64
Table 5-4: Trigonometrical operators - description and syntax	64
Table 5-5: Logical operators - description and syntax	65
Table 5-6: Measurement functions – description and syntax	66
Table 5-7: Miscellaneous operators - description and syntax	67
Table 5-8: Pushbuttons in the Statistics Channel Setup – Overview	79
Table 5-9: Pushbuttons in the Filter Channel Setup – Overview	83
Table 5-10: Complex FFT channel Setup – Overview	86
Table 5-11: Amplitude FFT channel Setup- Overview	87
Table 5-12: Phase FFT channel Setup- Overview	
Table 5-13 Rosette channel setup – Overview	
Table 5-14: Determining the principal axis angle $\varphi_0$ taking the sign of the numerator and the $\phi_0$	enumerator
into account	94
Table 5-15: Swept Sine Analysis setup – Overview	96
Table 5-16: TRION [™] Counter Overview	106
Table 5-17: Menu of a Counter channel in the Event mode	109
Table 5-18: Menu of a Counter channel in the Encoder mode	110
Table 5-19: Characteristics of Tacho, CDM+Trigger and Encoder sensors	112
Table 5-20: Available GPS channels	118
Table 5-21: GPS - channel type	118
Table 5-22: GPS channels – compatible instruments	119
	135
Table 6-1: 0.5 Hz sine wave sampled with 10 Hz in table format	
Table 6-1: 0.5 Hz sine wave sampled with 10 Hz in table format         Table 6-2: Properties of the window functions	153
Table 6-1: 0.5 Hz sine wave sampled with 10 Hz in table format Table 6-2: Properties of the window functions Table 10-1: Functionality of the pushbuttons in the <i>Screens</i> menu	
Table 6-1: 0.5 Hz sine wave sampled with 10 Hz in table formatTable 6-2: Properties of the window functionsTable 10-1: Functionality of the pushbuttons in the Screens menuTable 11-1: Functionality of the pushbuttons in the Reporting menu	
Table 6-1: 0.5 Hz sine wave sampled with 10 Hz in table formatTable 6-2: Properties of the window functionsTable 10-1: Functionality of the pushbuttons in the Screens menuTable 11-1: Functionality of the pushbuttons in the Reporting menuTable 11-2: Expanded Reporting Menu - Functionality	
Table 6-1: 0.5 Hz sine wave sampled with 10 Hz in table formatTable 6-2: Properties of the window functionsTable 10-1: Functionality of the pushbuttons in the Screens menuTable 11-1: Functionality of the pushbuttons in the Reporting menuTable 11-2: Expanded Reporting Menu - FunctionalityTable 13-1: Sampling rate and FFT block size	
Table 6-1: 0.5 Hz sine wave sampled with 10 Hz in table formatTable 6-2: Properties of the window functionsTable 10-1: Functionality of the pushbuttons in the Screens menuTable 11-1: Functionality of the pushbuttons in the Reporting menuTable 11-2: Expanded Reporting Menu - FunctionalityTable 13-1: Sampling rate and FFT block sizeTable 13-2: Telephone circuit Psophometer weighting coefficients and limits	
Table 6-1: 0.5 Hz sine wave sampled with 10 Hz in table formatTable 6-2: Properties of the window functionsTable 10-1: Functionality of the pushbuttons in the Screens menuTable 11-1: Functionality of the pushbuttons in the Reporting menuTable 11-2: Expanded Reporting Menu - FunctionalityTable 13-1: Sampling rate and FFT block sizeTable 13-2: Telephone circuit Psophometer weighting coefficients and limitsTable 13-3: C-message weighting coefficients and accuracy limits	
Table 6-1: 0.5 Hz sine wave sampled with 10 Hz in table formatTable 6-2: Properties of the window functionsTable 10-1: Functionality of the pushbuttons in the Screens menuTable 11-1: Functionality of the pushbuttons in the Reporting menuTable 11-2: Expanded Reporting Menu - FunctionalityTable 13-1: Sampling rate and FFT block sizeTable 13-2: Telephone circuit Psophometer weighting coefficients and limitsTable 13-3: C-message weighting coefficients and accuracy limitsTable 13-4: Characteristics of the optional flat filter with an equivalent noise bandwidth	